Skip to main content
Log in

Multifunctional modification of Fe3O4 nanoparticles for diagnosis and treatment of diseases: A review

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

With the rapid improvements in nanomaterials and imaging technology, great progresses have been made in diagnosis and treatment of diseases during the past decades. Fe3O4 magnetic nanoparticles (MNPs) with good biocompatibility and superparamagnetic property are usually used as contrast agent for diagnosis of diseases in magnetic resonance imaging (MRI). Currently, the combination of multiple imaging technologies has been considered as new tendency in diagnosis and treatment of diseases, which could enhance the accuracy and reliability of disease diagnosis and provide new strategies for disease treatment. Therefore, novel contrast agents used for multifunctional imaging are urgently needed. Fe3O4 MNPs are believed to be a potential candidate for construction of multifunctional platform in diagnosis and treatment of diseases. In recent years, there are a plethora of studies concerning the construction of multifunctional platform presented based on Fe3O4 MNPs. In this review, we introduce fabrication methods and modification strategies of Fe3O4 MNPs, expecting great improvements for diagnosis and treatment of diseases in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small, 2008, 4(1): 26–49

    Article  CAS  Google Scholar 

  2. Formoso P, Muzzalupo R, Tavano L, et al. Nanotechnology for the environment and medicine. Mini-Reviews in Medicinal Chemistry, 2016, 16(8): 668–675

    Article  CAS  Google Scholar 

  3. Hoshyar N, Gray S, Han H B, et al. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine, 2016, 11(6): 673–692

    Article  CAS  Google Scholar 

  4. Farokhzad O C, Langer R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1): 16–20

    Article  CAS  Google Scholar 

  5. Baetke S C, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. The British Journal of Radiology, 2015, 88(1054): 20150207

    Article  CAS  Google Scholar 

  6. Gupta J. Nanotechnology applications in medicine and dentistry. Journal of Investigative and Clinical Dentistry, 2011, 2(2): 81–88

    Article  Google Scholar 

  7. Zhang A, Lieber C M. Nano-bioelectronics. Chemical Reviews, 2016, 116(1): 215–257

    Article  CAS  Google Scholar 

  8. Angle M R, Cui B, Melosh N A. Nanotechnology and neurophysiology. Current Opinion in Neurobiology, 2015, 32: 132–140

    Article  CAS  Google Scholar 

  9. Noy A. Bionanoelectronics. Advanced Materials, 2011, 23(7): 807–820

    Article  CAS  Google Scholar 

  10. Guerra F D, Attia M F, Whitehead D C, et al. Nanotechnology for environmental remediation: Materials and applications. Molecules, 2018, 23(7): 1760

    Article  Google Scholar 

  11. Hu X, Xu J, Wu C, et al. Ethylenediamine grafted to graphene oxide@Fe3O4 for chromium(VI) decontamination: Performance, modelling, and fractional factorial design. PLoS One, 2017, 12 (10): e0187166

    Article  Google Scholar 

  12. Ma S, Zhan S, Jia Y, et al. Superior antibacterial activity of Fe3O4-TiO2 nanosheets under solar light. ACS Applied Materials & Interfaces, 2015, 7(39): 21875–21883

    Article  CAS  Google Scholar 

  13. Sadeghi R, Rodriguez R J, Yao Y, et al. Advances in nanotechnology as they pertain to food and agriculture: Benefits and risks. Annual Review of Food Science and Technology, 2017, 8(1): 467–492

    Article  Google Scholar 

  14. Iavicoli I, Leso V, Beezhold D H, et al. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology, 2017, 329: 96–111

    Article  CAS  Google Scholar 

  15. Das G, Patra J K, Paramithiotis S, et al. The sustainability challenge of food and environmental nanotechnology: Current status and imminent perceptions. International Journal of Environmental Research and Public Health, 2019, 16(23): 4848

    Article  CAS  Google Scholar 

  16. Rossi M, Passeri D, Sinibaldi A, et al. Nanotechnology for food packaging and food quality assessment. Advances in Food and Nutrition Research, 2017, 82: 149–204

    Article  CAS  Google Scholar 

  17. Wei M, Le W D. The role of nanomaterials in autophagy. Advances in Experimental Medicine and Biology, 2019, 1206: 273–286

    Article  CAS  Google Scholar 

  18. Mohammadinejad R, Moosavi M A, Tavakol S, et al. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy, 2019, 15(1): 4–33

    Article  CAS  Google Scholar 

  19. El-Boubbou K. Magnetic iron oxide nanoparticles as drug carriers: Preparation, conjugation and delivery. Nanomedicine, 2018, 13(8): 929–952

    Article  CAS  Google Scholar 

  20. Song C, Sun W, Xiao Y, et al. Ultrasmall iron oxide nanoparticles: Synthesis, surface modification, assembly, and biomedical applications. Drug Discovery Today, 2019, 24(3): 835–844

    Article  CAS  Google Scholar 

  21. Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18): 3995–4021

    Article  CAS  Google Scholar 

  22. Yuan Y, Ding Z, Qian J, et al. Casp3/7-instructed intracellular aggregation of Fe3O4 nanoparticles enhances T2 MR imaging of tumor apoptosis. Nano Letters, 2016, 16(4): 2686–2691

    Article  CAS  Google Scholar 

  23. Chen Y, Zhou Q, Li X, et al. Ultrasmall paramagnetic iron oxide nanoprobe targeting epidermal growth factor receptor for in vivo magnetic resonance imaging of hepatocellular carcinoma. Bioconjugate Chemistry, 2017, 28(11): 2794–2803

    Article  CAS  Google Scholar 

  24. Huang J, Wang L, Zhong X, et al. Facile non-hydrothermal synthesis of oligosaccharides coated sub-5 nm magnetic iron oxide nanoparticles with dual MRI contrast enhancement effect. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(33): 5344–5351

    Article  CAS  Google Scholar 

  25. Martinkova P, Brtnicky M, Kynicky J, et al. Iron oxide nanoparticles: Innovative tool in cancer diagnosis and therapy. Advanced Healthcare Materials, 2018, 7(5): 1700932

    Article  Google Scholar 

  26. Qiao R, Jia Q, Zeng J, et al. Magnetic iron oxide nanoparticles and their applications in magnetic resonance imaging. Acta Biophysica Sinica, 2011, 27(4): 272–288 (in Chinese)

    Article  CAS  Google Scholar 

  27. Das R, Rinaldi-Montes N, Alonso J, et al. Boosted hyperthermia therapy by combined ac magnetic and photothermal exposures in Ag/Fe3O4 nanoflowers. ACS Applied Materials & Interfaces, 2016, 8(38): 25162–25169

    Article  CAS  Google Scholar 

  28. Nielsen O S, Horsman M, Overgaard J. A future for hyperthermia in cancer treatment? European Journal of Cancer, 2001, 37(13): 1587–1589

    Article  CAS  Google Scholar 

  29. Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics. Expert Opinion on Drug Delivery, 2019, 16(1): 69–78

    Article  CAS  Google Scholar 

  30. Tietze R, Zaloga J, Unterweger H, et al. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochemical and Biophysical Research Communications, 2015, 468(3): 463–470

    Article  CAS  Google Scholar 

  31. Hu X, Ma M, Zeng M, et al. Supercritical carbon dioxide anchored Fe3O4 nanoparticles on graphene foam and lithium battery performance. ACS Applied Materials & Interfaces, 2014, 6(24): 22527–22533

    Article  CAS  Google Scholar 

  32. Harnchana V, Chaiyachad S, Pimanpang S, et al. Hierarchical Fe3O4-reduced graphene oxide nanocomposite grown on NaCl crystals for triiodide reduction in dye-sensitized solar cells. Scientific Reports, 2019, 9: 1494

    Article  Google Scholar 

  33. Niemiec T, Dudek M, Dziekan N, et al. The method of coating Fe3O4 with carbon nanoparticles to modify biological properties of oxide measured in vitro. Journal of AOAC International, 2017, 100(4): 905–915

    Article  CAS  Google Scholar 

  34. Chen S S, Xu H, Xu H J, et al. A facile ultrasonication assisted method for Fe3O4@SiO2-Ag nanospheres with excellent antibacterial activity. Dalton Transactions, 2015, 44(19): 9140–9148

    Article  CAS  Google Scholar 

  35. Jiao Z, Zhang Y, Fan H. Ultrasonic-microwave method in preparation of polypyrrole-coated magnetic particles for vitamin D extraction in milk. Journal of Chromatography A, 2016, 1457: 7–13

    Article  CAS  Google Scholar 

  36. Montaseri H, Alipour S, Vakilinezhad M A. Development, evaluation and optimization of superparamagnetite nanoparticles prepared by co-precipitation method. Research in Pharmaceutical Sciences, 2017, 12(4): 274–282

    Article  Google Scholar 

  37. Park J, An K, Hwang Y, et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Materials, 2004, 3(12): 891–895

    Article  CAS  Google Scholar 

  38. Yu X, Cheng G, Zhou M D, et al. On-demand one-step synthesis of monodisperse functional polymeric microspheres with droplet microfluidics. Langmuir, 2015, 31(13): 3982–3992

    Article  CAS  Google Scholar 

  39. Li P, Li L, Zhao Y, et al. Selective binding and magnetic separation of histidine-tagged proteins using Fe3O4/Cu-apatite nanoparticles. Journal of Inorganic Biochemistry, 2016, 156: 49–54

    Article  CAS  Google Scholar 

  40. Lu A H, Salabas E L, Schüth F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie International Edition in English, 2007, 46(8): 1222–1244

    Article  CAS  Google Scholar 

  41. Ling D, Lee N, Hyeon T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Accounts of Chemical Research, 2015, 48(5): 1276–1285

    Article  CAS  Google Scholar 

  42. Park J, Kadasala N R, Abouelmagd S A, et al. Polymer-iron oxide composite nanoparticles for EPR-independent drug delivery. Biomaterials, 2016, 101: 285–295

    Article  CAS  Google Scholar 

  43. Syu W J, Huang C C, Hsiao J K, et al. Co-precipitation synthesis of near-infrared iron oxide nanocrystals on magnetically targeted imaging and photothermal cancer therapy via photoablative protein denature. Nanotheranostics, 2019, 3(3): 236–254

    Article  Google Scholar 

  44. Gan L, Lu Z, Cao D, et al. Effects of cetyltrimethylammonium bromide on the morphology of green synthesized Fe3O4 nanoparticles used to remove phosphate. Materials Science and Engineering C, 2018, 82: 41–45

    Article  CAS  Google Scholar 

  45. Wang H, Zhao X, Meng W, et al. Cetyltrimethylammonium bromide-coated Fe3O4 magnetic nanoparticles for analysis of 15 trace polycyclic aromatic hydrocarbons in aquatic environments by ultraperformance, liquid chromatography with fluorescence detection. Analytical Chemistry, 2015, 87(15): 7667–7675

    Article  CAS  Google Scholar 

  46. Nosrati H, Salehiabar M, Manjili H K, et al. Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. International Journal of Biological Macromolecules, 2018, 108: 909–915

    Article  CAS  Google Scholar 

  47. Anbarasu M, Anandan M, Chinnasamy E, et al. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochimica Acta Part A: Molecular Spectroscopy, 2015, 135: 536–539

    Article  CAS  Google Scholar 

  48. Li C. A targeted approach to cancer imaging and therapy. Nature Materials, 2014, 13(2): 110–115

    Article  CAS  Google Scholar 

  49. LaGrow A P, Besenhard M O, Hodzic A, et al. Unravelling the growth mechanism of the co-precipitation of iron oxide nanoparticles with the aid of synchrotron X-ray diffraction in solution. Nanoscale, 2019, 11(14): 6620–6628

    Article  CAS  Google Scholar 

  50. Jun Y W, Huh Y M, Choi J S, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. Journal of the American Chemical Society, 2005, 127(16): 5732–5733

    Article  CAS  Google Scholar 

  51. Hufschmid R, Arami H, Ferguson R M, et al. Synthesis of phasepure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale, 2015, 7(25): 11142–11154

    Article  CAS  Google Scholar 

  52. Guo H, Zhang Y, Liang W, et al. An inorganic magnetic fluorescent nanoprobe with favorable biocompatibility for dual-modality bioimaging and drug delivery. Journal of Inorganic Biochemistry, 2019, 192: 72–81

    Article  CAS  Google Scholar 

  53. Effenberger F B, Couto R A, Kiyohara P K, et al. Economically attractive route for the preparation of high quality magnetic nanoparticles by the thermal decomposition of iron(III) acetylacetonate. Nanotechnology, 2017, 28(11): 115603

    Article  Google Scholar 

  54. Patsula V, Kosinová L, Lovrić M, et al. Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron (III) glucuronate and application in magnetic resonance imaging. ACS Applied Materials & Interfaces, 2016, 8(11): 7238–7247

    Article  CAS  Google Scholar 

  55. Barbosa I A, de Sousa Filho P C, da Silva D L, et al. Metalloporphyrins immobilized in Fe3O4@SiO2 mesoporous submicrospheres: Reusable biomimetic catalysts for hydrocarbon oxidation. Journal of Colloid and Interface Science, 2016, 469: 296–309

    Article  CAS  Google Scholar 

  56. Mumtaz S, Wang S, Hussain S Z, et al. Dopamine coated Fe3O4 nanoparticles as enzyme mimics for the sensitive detection of bacteria. Chemical Communications, 2017, 53(91): 12306–12308

    Article  CAS  Google Scholar 

  57. Liu Y, Purich D L, Wu C, et al. Ionic functionalization of hydrophobic colloidal nanoparticles to form ionic nanoparticles with enzyme like properties. Journal of the American Chemical Society, 2015, 137(47): 14952–14958

    Article  CAS  Google Scholar 

  58. Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis. Nature, 2005, 437(7055): 121–124

    Article  CAS  Google Scholar 

  59. Cai H, An X, Cui J, et al. Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Applied Materials & Interfaces, 2013, 5(5): 1722–1731

    Article  CAS  Google Scholar 

  60. Bagwe R P, Kanicky J R, Palla B J, et al. Improved drug delivery using microemulsions: rationale, recent progress, and new horizons. Critical Reviews in Therapeutic Drug Carrier Systems, 2001, 18(1): 77–140

    CAS  Google Scholar 

  61. Bai F, Wang D, Huo Z, et al. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angewandte Chemie International Edition, 2007, 46(35): 6650–6653

    Article  CAS  Google Scholar 

  62. Liu Z L, Wang X, Yao K, et al. Synthesis of magnetite nanoparticles in W/O microemulsion. Journal of Materials Science, 2004, 39(7): 2633–2636

    Article  CAS  Google Scholar 

  63. Zhuang L, Zhang W, Zhao Y, et al. Preparation and characterization of Fe3O4 particles with novel nanosheets morphology and magnetochromatic property by a modified solvothermal method. Scientific Reports, 2015, 5(1): 9320

    Article  CAS  Google Scholar 

  64. Lastovina T A, Budnyk A P, Kudryavtsev E A, et al. Solvothermal synthesis of Sm3+-doped Fe3O4 nanoparticles. Materials Science and Engineering C, 2017, 80: 110–116

    Article  CAS  Google Scholar 

  65. Gao L, Tang Y, Wang C, et al. Highly-efficient amphiphilic magnetic nanocomposites based on a simple sol-gel modification for adsorption of phthalate esters. Journal of Colloid and Interface Science, 2019, 552: 142–152

    Article  CAS  Google Scholar 

  66. Zeng Y, Hao R, Xing B, et al. One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. Chemical Communications, 2010, 46(22): 3920–3922

    Article  CAS  Google Scholar 

  67. Carenza E, Barceló V, Morancho A, et al. Rapid synthesis of water-dispersible superparamagnetic iron oxide nanoparticles by a microwave-assisted route for safe labeling of endothelial progenitor cells. Acta Biomaterialia, 2014, 10(8): 3775–3785

    Article  CAS  Google Scholar 

  68. Shan D, Deng S, Zhao T, et al. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. Journal of Hazardous Materials, 2016, 305: 156–163

    Article  CAS  Google Scholar 

  69. Chang M, Chang Y J, Chao P Y, et al. Exosome purification based on PEG-coated Fe3O4 nanoparticles. PLoS One, 2018, 13 (6): e0199438

    Article  Google Scholar 

  70. Shahabadi N, Falsafi M, Mansouri K. Improving antiproliferative effect of the anticancer drug cytarabine on human promyelocytic leukemia cells by coating on Fe3O4@SiO2 nanoparticles. Colloids and Surfaces B: Biointerfaces, 2016, 141: 213–222

    Article  CAS  Google Scholar 

  71. Achilli C, Grandi S, Guidetti G F, et al. Fe3O4@SiO2 core-shell nanoparticles for biomedical purposes: Adverse effects on blood cells. Biomaterials Science, 2016, 4(10): 1417–1421

    Article  CAS  Google Scholar 

  72. Wei Y, Yin G, Ma C, et al. Synthesis and cellular compatibility of biomineralized Fe3O4 nanoparticles in tumor cells targeting peptides. Colloids and Surfaces B: Biointerfaces, 2013, 107: 180–188

    Article  CAS  Google Scholar 

  73. Wang G, Gao W, Zhang X, et al. Au nanocage functionalized with ultra-small Fe3O4 nanoparticles for targeting T1-T2 dual MRI and CT imaging of tumor. Scientific Reports, 2016, 6: 28258

    Article  CAS  Google Scholar 

  74. Felber M, Alberto R. 99mTc radiolabelling of Fe3O4-Au core-shell and Au-Fe3O4 dumbbell-like nanoparticles. Nanoscale, 2015, 7(15): 6653–6660

    Article  CAS  Google Scholar 

  75. Gou M, Li S, Zhang L, et al. Facile one-pot synthesis of carbon/ calcium phosphate/Fe3O4 composite nanoparticles for simultaneous imaging and pH/NIR-responsive drug delivery. Chemical Communications, 2016, 52(74): 11068–11071

    Article  CAS  Google Scholar 

  76. Shen S, Ding B, Zhang S, et al. Near-infrared light-responsive nanoparticles with thermosensitive yolk-shell structure for multimodal imaging and chemo-photothermal therapy of tumor. Nanomedicine, 2017, 13(5): 1607–1616

    Article  CAS  Google Scholar 

  77. Nayak S, Lyon L A. Soft nanotechnology with soft nanoparticles. Angewandte Chemie International Edition, 2005, 44(47): 7686–7708

    Article  CAS  Google Scholar 

  78. Tang Z, Zhao X, Zhao T, et al. Magnetic nanoparticles interaction with humic acid: In the presence of surfactants. Environmental Science & Technology, 2016, 50(16): 8640–8648

    Article  CAS  Google Scholar 

  79. Dutta B, Shetake N G, Barick B K, et al. pH sensitive surfactant-stabilized Fe3O4 magnetic nanocarriers for dual drug delivery. Colloids and Surfaces B: Biointerfaces, 2018, 162: 163–171

    Article  CAS  Google Scholar 

  80. Justin C, Samrot A V, Sruthi D P, et al. Preparation, characterization and utilization of core/shell super paramagnetic iron oxide nanoparticles for curcumin delivery. PLoS One, 2018, 13(7): e0200440

    Article  CAS  Google Scholar 

  81. Can H K, Kavlak S, ParviziKhosroshahi S, et al. Preparation, characterization and dynamical mechanical properties of dextrancoated iron oxide nanoparticles (DIONPs). Artificial Cells Nanomedicine and Biotechnology, 2018, 46(2): 421–431

    Article  CAS  Google Scholar 

  82. Barrow M, Taylor A, Carrión J C, et al. Co-precipitation of DEAE-dextran coated SPIONs: How synthesis conditions affect particle properties, stem cell labelling and MR contrast. Contrast Media & Molecular Imaging, 2016, 11(5): 362–370

    Article  CAS  Google Scholar 

  83. Wu D, Zhu L, Li Y, et al. Superparamagnetic chitosan nanocomplexes for colorectal tumor-targeted delivery of irinotecan. International Journal of Pharmaceutics, 2020, 584: 119394

    Article  CAS  Google Scholar 

  84. Soares P I P, Machado D, Laia C, et al. Thermal and magnetic properties of chitosan-iron oxide nanoparticles. Carbohydrate Polymers, 2016, 149: 382–390

    Article  CAS  Google Scholar 

  85. Zhang X, Wang Y, Yang S. Simultaneous removal of Co(II) and 1-naphthol by core-shell structured Fe3O4@cyclodextrin magnetic nanoparticles. Carbohydrate Polymers, 2014, 114: 521–529

    Article  Google Scholar 

  86. Xie J, Huang J, Li X, et al. Iron oxide nanoparticle platform for biomedical applications. Current Medicinal Chemistry, 2009, 16 (10): 1278–1294

    Article  CAS  Google Scholar 

  87. Wang F, Li X, Li W, et al. Dextran coated Fe3O4 nanoparticles as a near-infrared laser-driven photothermal agent for efficient ablation of cancer cells in vitro and in vivo. Materials Science and Engineering C, 2018, 90: 46–56

    Article  CAS  Google Scholar 

  88. Assa F, Jafarizadeh-Malmiri H, Ajamein H, et al. Chitosan magnetic nanoparticles for drug delivery systems. Critical Reviews in Biotechnology, 2017, 37(4): 492–509

    Article  CAS  Google Scholar 

  89. Xing H, Zhang S, Bu W, et al. Ultrasmall NaGdF4 nanodots for efficient MR angiography and atherosclerotic plaque imaging. Advanced Materials, 2014, 26(23): 3867–3872

    Article  CAS  Google Scholar 

  90. Gupta A K, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Transactions on Nanobioscience, 2004, 3(1): 66–73

    Article  Google Scholar 

  91. Yang G, Ma W, Zhang B, et al. The labeling of stem cells by superparamagnetic iron oxide nanoparticles modified with PEG/ PVP or PEG/PEI. Materials Science and Engineering C, 2016, 62: 384–390

    Article  CAS  Google Scholar 

  92. Chen Y, Zhang F, Wang Q, et al. The synthesis of LA-Fe3O4@PDA-PEG-DOX for photothermal therapy-chemotherapy. Dalton Transactions, 2018, 47(7): 2435–2443

    Article  CAS  Google Scholar 

  93. Wang L, Wang M, Zhou B, et al. PEGylated reduced-graphene oxide hybridized with Fe3O4 nanoparticles for cancer photothermal-immunotherapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2019, 7(46): 7406–7414

    Article  Google Scholar 

  94. Yang C, Guo W, Cui L, et al. pH-responsive magnetic core-shell nanocomposites for drug delivery. Langmuir, 2014, 30(32): 9819–9827

    Article  CAS  Google Scholar 

  95. Wei H, Insin N, Lee J, et al. Compact zwitterion-coated iron oxide nanoparticles for biological applications. Nano Letters, 2012, 12(1): 22–25

    Article  CAS  Google Scholar 

  96. Liu Y, Chen T, Wu C, et al. Facile surface functionalization of hydrophobic magnetic nanoparticles. Journal of the American Chemical Society, 2014, 136(36): 12552–12555

    Article  CAS  Google Scholar 

  97. Wang J J, Lei K F, Han F. Tumor microenvironment: Recent advances in various cancer treatments. European Review for Medical and Pharmacological Sciences, 2018, 22(12): 3855–3864

    Google Scholar 

  98. Zaimy M A, Saffarzadeh N, Mohammadi A, et al. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Therapy, 2017, 24(6): 233–243

    Article  CAS  Google Scholar 

  99. Li L, Gao F, Jiang W, et al. Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging. Drug Delivery, 2016, 23(5): 1726–1733

    CAS  Google Scholar 

  100. Choi H, Choi S R, Zhou R, et al. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Academic Radiology, 2004, 11(9): 996–1004

    Article  Google Scholar 

  101. Yang J, Luo Y, Xu Y, et al. Conjugation of iron oxide nanoparticles with RGD-modified dendrimers for targeted tumor MR imaging. ACS Applied Materials & Interfaces, 2015, 7(9): 5420–5428

    Article  CAS  Google Scholar 

  102. Luo Y, Yang J, Yan Y, et al. RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T1-weighted MR imaging of gliomas. Nanoscale, 2015, 7(34): 14538–14546

    Article  CAS  Google Scholar 

  103. Zhang H, Li J, Hu Y, et al. Folic acid-targeted iron oxide nanoparticles as contrast agents for magnetic resonance imaging of human ovarian cancer. Journal of Ovarian Research, 2016, 9 (1):19

    Article  Google Scholar 

  104. Cui Y, Zhang C, Luo R, et al. Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MRI with RGD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles. International Journal of Nanomedicine, 2016, 11: 5671–5682

    Article  CAS  Google Scholar 

  105. Hirata E, Sahai E. Tumor microenvironment and differential responses to therapy. Cold Spring Harbor Perspectives in Medicine, 2017, 7(7): a026781

    Article  Google Scholar 

  106. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Letters, 2017, 387: 61–68

    Article  CAS  Google Scholar 

  107. Li H, Zhao Y, Jia Y, et al. Covalently assembled dopamine nanoparticle as an intrinsic photosensitizer and pH-responsive nanocarrier for potential application in anticancer therapy. Chemical Communications, 2019, 55(100): 15057–15060

    Article  CAS  Google Scholar 

  108. Li E, Yang Y, Hao G, et al. Multifunctional magnetic mesoporous silica nanoagents for in vivo enzyme-responsive drug delivery and MR imaging. Nanotheranostics, 2018, 2(3): 233–242

    Article  Google Scholar 

  109. Yang T, Niu D, Chen J, et al. Biodegradable organosilica magnetic micelles for magnetically targeted MRI and GSH-triggered tumor chemotherapy. Biomaterials Science, 2019, 7(7): 2951–2960

    Article  CAS  Google Scholar 

  110. Gao Z, Hou Y, Zeng J, et al. Tumor microenvironment-triggered aggregation of antiphagocytosis 99mTc-labeled Fe3O4 nanoprobes for enhanced tumor imaging in vivo. Advanced Materials, 2017, 29(24): 1701095

    Article  Google Scholar 

  111. Lu J, Sun J, Li F, et al. Highly sensitive diagnosis of small hepatocellular carcinoma using pH-responsive iron oxide nanocluster assemblies. Journal of the American Chemical Society, 2018, 140(32): 10071–10074

    Article  CAS  Google Scholar 

  112. Ma T, Hou Y, Zeng J, et al. Dual-ratiometric target-triggered fluorescent probe for simultaneous quantitative visualization of tumor microenvironment protease activity and pH in vivo. Journal of the American Chemical Society, 2018, 140(1): 211–218

    Article  CAS  Google Scholar 

  113. Qin M, Peng Y, Xu M, et al. Uniform Fe3O4/Gd2O3-DHCA nanocubes for dual-mode magnetic resonance imaging. Beilstein Journal of Nanotechnology, 2020, 11: 1000–1009

    Article  CAS  Google Scholar 

  114. Zhou Z, Huang D, Bao J, et al. A synergistically enhanced T1-T2 dual-modal contrast agent. Advanced Materials, 2012, 24(46): 6223–6228

    Article  CAS  Google Scholar 

  115. Lu C, Dong P, Pi L, et al. Hydroxyl-PEG-phosphonic acid-stabilized superparamagnetic manganese oxide-doped iron oxide nanoparticles with synergistic effects for dual-mode MR imaging. Langmuir, 2019, 35(29): 9474–9482

    Article  CAS  Google Scholar 

  116. Xu S, Yang F, Zhou X, et al. Uniform PEGylated PLGA microcapsules with embedded Fe3O4 nanoparticles for US/MR dual-modality imaging. ACS Applied Materials & Interfaces, 2015, 7(36): 20460–20468

    Article  CAS  Google Scholar 

  117. Cui X, Mathe D, Kovács N, et al. Synthesis, characterization, and application of core-shell Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm) nanoparticle as trimodal (MRI, PET/ SPECT, and optical) imaging agents. Bioconjugate Chemistry, 2016, 27(2): 319–328

    Article  CAS  Google Scholar 

  118. Sánchez A, Ovejero Paredes K, Ruiz-Cabello J, et al. Hybrid decorated core@shell Janus nanoparticles as a flexible platform for targeted multimodal molecular bioimaging of cancer. ACS Applied Materials & Interfaces, 2018, 10(37): 31032–31043

    Article  Google Scholar 

  119. Cai W, Guo M, Weng X, et al. Modified green synthesis of Fe3O4@SiO2 nanoparticles for pH responsive drug release. Materials Science and Engineering C, 2020, 112: 110900

    Article  CAS  Google Scholar 

  120. Zhang T Y, Li F Y, Xu Q H, et al. Ferrimagnetic nanochains-based mesenchymal stem cell engineering for highly efficient post-stroke recovery. Advanced Functional Materials, 2019, 29 (24): 1900603

    Article  Google Scholar 

  121. Huh Y M, Lee E S, Lee J H, et al. Hybrid nanoparticles for magnetic resonance imaging of target-specificviral gene delivery. Advanced Materials, 2007, 19(20): 3109–3112

    Article  CAS  Google Scholar 

  122. Arriortua O K, Insausti M, Lezama L, et al. RGD-functionalized Fe3O4 nanoparticles for magnetic hyperthermia. Colloids and Surfaces B: Biointerfaces, 2018, 165: 315–324

    Article  CAS  Google Scholar 

  123. Xu C, Zheng Y, Gao W, et al. Magnetic hyperthermia ablation of tumors using injectable Fe3O4/calcium phosphate cement. ACS Applied Materials & Interfaces, 2015, 7(25): 13866–13875

    Article  CAS  Google Scholar 

  124. Li L, Fu S, Chen C, et al. Microenvironment-driven bioelimination of magnetoplasmonic nanoassemblies and their multimodal imaging-guided tumor photothermal therapy. ACS Nano, 2016, 10(7): 7094–7105

    Article  CAS  Google Scholar 

  125. Liu Y, Yang Z, Huang X, et al. Glutathione-responsive self-assembled magnetic gold nanowreath for enhanced tumor imaging and imaging-guided photothermal therapy. ACS Nano, 2018, 12(8): 8129–8137

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11502158, 11632013 and 11802197). The support of the Shanxi Provincial Key Research and Development Project, China (Grant Nos. 201803D421060, 201903D421064 and 201803D421076), the Natural Science Foundation of Shanxi Province, China (201901D111078 and 201901D111077), and the Shanxi Scholarship Council of China (No. HGKY2019037) are also acknowledged with gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, M., Xu, M., Niu, L. et al. Multifunctional modification of Fe3O4 nanoparticles for diagnosis and treatment of diseases: A review. Front. Mater. Sci. 15, 36–53 (2021). https://doi.org/10.1007/s11706-021-0543-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-021-0543-y

KeyWords

Navigation