Skip to main content
Log in

A review on biodegradable materials for cardiovascular stent application

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

A stent is a medical device designed to serve as a temporary or permanent internal scaffold to maintain or increase the lumen of a body conduit. The researchers and engineers diverted to investigate biodegradable materials due to the limitation of metallic materials in stent application such as stent restenosis which requires prolonged anti platelet therapy, often result in smaller lumen after implantation and obstruct re-stenting treatments. Biomedical implants with temporary function for the vascular intervention are extensively studied in recent years. The rationale for biodegradable stent is to provide the support for the vessel in predicted period of time and then degrading into biocompatible constituent. The degradation of stent makes the re-stenting possible after several months and also ameliorates the vessel wall quality. The present article focuses on the biodegradable materials for the cardiovascular stent. The objective of this review is to describe the possible biodegradable materials for stent and their properties such as design criteria, degradation behavior, drawbacks and advantages with their recent clinical and preclinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arjomand H, Turi Z G, Mc Cormick D, et al. Percutaneous coronary intervention: historical perspectives, current status, and future directions. American Heart Journal, 2003, 146(5): 787–796

    Article  Google Scholar 

  2. Mueller R L, Sanborn T A. The history of interventional cardiology: cardiac catheterization, angioplasty, and related interventions. American Heart Journal, 1995, 129(1): 146–172

    Article  Google Scholar 

  3. Boucher R A, Myler R K, Clark D A, et al. Coronary angiography and angioplasty. Catheterization and Cardiovascular Diagnosis, 1988, 14(4): 269–285

    Article  Google Scholar 

  4. de la Cruz K I, Tsai P I, Cohn W E, et al. Revascularization treatment recommendations based on atherosclerotic disease distribution: coronary artery bypass grafting versus stenting. Current Atherosclerosis Reports, 2008, 10(5): 434–437

    Article  Google Scholar 

  5. Mani G, Feldman M D, Patel D, et al. Coronary stents: a materials perspective. Biomaterials, 2007, 28(9): 1689–1710

    Article  Google Scholar 

  6. Waksman R. Biodegradable stents: they do their job and disappear. The Journal of Invasive Cardiology, 2006, 18(2): 70–74

    Google Scholar 

  7. Bertrand O F, Sipehia R, Mongrain R, et al. Biocompatibility aspects of new stent technology. Journal of the American College of Cardiology, 1998, 32(3): 562–571

    Article  Google Scholar 

  8. Roubin G S, Cannon A D, Agrawal S K, et al. Intracoronary stenting for acute and threatened closure complicating percutaneous transluminal coronary angioplasty. Circulation, 1992, 85 (3): 916–927

    Article  Google Scholar 

  9. Regar E, Sianos G, Serruys P W. Stent development and local drug delivery. British Medical Bulletin, 2001, 59(5): 227–248

    Article  Google Scholar 

  10. Ashby D T, Dangas G, Mehran R, et al. Coronary artery stenting. Catheterization and Cardiovascular Interventions, 2002, 56(1): 83–102

    Article  Google Scholar 

  11. Holzapfel G A, Sommer G, Gasser C T, et al. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. American Journal of Physiology- Heart and Circulatory Physiology, 2005, 289(5): H2048–H2058

    Article  Google Scholar 

  12. Frohlich J, Dobiasova M, Lear S, et al. The role of risk factors in the development of atherosclerosis. Critical Reviews in Clinical Laboratory Sciences, 2001, 38(5): 401–440

    Article  Google Scholar 

  13. Robaina S, Jayachandran B, He Y, et al. Platelet adhesion to simulated stented surfaces. Journal of Endovascular Therapy, 2003, 10(5): 978–986

    Article  Google Scholar 

  14. Rogers C, Edelman E R. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation, 1995, 91 (12): 2995–3001

    Article  Google Scholar 

  15. Farb A, Weber D K, Kolodgie F D, et al. Morphological predictors of restenosis after coronary stenting in humans. Circulation, 2002, 105(25): 2974–2980

    Article  Google Scholar 

  16. Wentzel J J, Gijsen F J, Stergiopulos N, et al. Shear stress, vascular remodeling and neointimal formation. Journal of Biomechanics, 2003, 36(5): 681–688

    Article  Google Scholar 

  17. Wentzel J J, Krams R, Schuurbiers J C, et al. Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation, 2001, 103 (13): 1740–1745

    Article  Google Scholar 

  18. Berry J L, Manoach E, Mekkaoui C, et al. Hemodynamics and wall mechanics of a compliance matching stent: in vitro and in vivo analysis. Journal of Vascular & Interventional Radiology, 2002, 13(1): 97–105

    Article  Google Scholar 

  19. Glagov S, Zarins C K, Masawa N, et al. Mechanical functional role of non-atherosclerotic intimal thickening. Frontiers of Medical and Biological Engineering, 1993, 5(1): 37–43

    Google Scholar 

  20. Babapulle M N, Eisenberg M J. Coated stents for the prevention of restenosis: Part II. Circulation, 2002, 106(22): 2859–2866

    Article  Google Scholar 

  21. Rebelo N, Perry M. Finite element analysis for the design of Nitinol medical devices. Minimally Invasive Therapy & Allied Technologies, 2009, 9(2): 75–80

    Article  Google Scholar 

  22. Kastrati A, Dirschinger J, Boekstegers P, et al. Influence of stent design on 1-year outcome after coronary stent placement: a randomized comparison of five stent types in 1,147 unselected patients. Catheterization and Cardiovascular Interventions, 2000, 50(3): 290–297

    Article  Google Scholar 

  23. Griffiths H, Peeters P, Verbist J, et al. Future devices: bioabsorbable stents. The British Journal of Cardiology, 2004, 11: AIC 80–AIC 84

    Google Scholar 

  24. Tominaga R, Kambic H E, Emoto H, et al. Effects of design geometry of intravascular endoprostheses on stenosis rate in normal rabbits. American Heart Journal, 1992, 123(1): 21–28

    Article  Google Scholar 

  25. Gurbel P A, Callahan K P, Malinin A I, et al. Could stent design affect platelet activation? Results of the Platelet Activation in STenting (PAST) study. The Journal of Invasive Cardiology, 2002, 14(10): 584–589

    Google Scholar 

  26. Leimgruber P P, Roubin G S, Anderson H V, et al. Influence of intimal dissection on restenosis after successful coronary angioplasty. Circulation, 1985, 72(3): 530–535

    Article  Google Scholar 

  27. Fischman D L, Leon M B, Baim D S, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. New England Journal of Medicine, 1994, 331(8): 496–501

    Article  Google Scholar 

  28. Nuutinen J P, Clerc C, Reinikainen R, et al. Mechanical properties and in vitro degradation of bioabsorbable selfexpanding braided stents. Journal of Biomaterials Science: Polymer Edition, 2003, 14(3): 255–266

    Article  Google Scholar 

  29. Morton A C, Crossman D, Gunn J. The influence of physical stent parameters upon restenosis. Pathologie Biologie, 2004, 52 (4): 196–205

    Article  Google Scholar 

  30. Lau K W, Johan A, Sigwart U, et al. A stent is not just a stent: Stent construction and design do matter in its clinical performance. Singapore Medical Journal, 2004, 45(7): 305–311

    Google Scholar 

  31. Rogers C D. Optimal stent design for drug delivery. Reviews in Cardiovascular Medicine, 2004, 5(Suppl 2): S9–S15

    Article  Google Scholar 

  32. Bennett M R, O’Sullivan M. Mechanisms of angioplasty and stent restenosis: implications for design of rational therapy. Pharmacology & Therapeutics, 2001, 91(2): 149–166

    Article  Google Scholar 

  33. Tabata Y. Biomaterial technology for tissue engineering applications. Journal of the Royal Society Interface, 2009, 6(Suppl 3): S311–S324

    Article  Google Scholar 

  34. Ramcharitar S, Serruys P W. Fully biodegradable coronary stents: progress to date. American Journal of Cardiovascular Drugs, 2008, 8(5): 305–314

    Article  Google Scholar 

  35. Ormiston J A, Serruys P W, Regar E, et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective openlabel trial. Lancet, 2008, 371(9616): 899–907

    Article  Google Scholar 

  36. Seiler H G, Sigel H, Sigel A. Handbook on toxicity of inorganic compounds. Analytica Chimica Acta, 1987, 237: 511

    Article  Google Scholar 

  37. Garg S, Serruys P. Biodegradable stents and non-biodegradable stents. Minerva Cardioangiologica, 2009, 57(5): 537–565

    Google Scholar 

  38. Bourantas C V, Onuma Y, Farooq V, et al. Bioresorbable scaffolds: current knowledge, potentialities and limitations experienced during their first clinical applications. International Journal of Cardiology, 2013, 167(1): 11–21

    Article  Google Scholar 

  39. Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart, 2003, 89(6): 651–656

    Article  Google Scholar 

  40. Wiebe J, Nef H M, Hamm C W. Current status of bioresorbable scaffolds in the treatment of coronary artery disease. Journal of the American College of Cardiology, 2014, 64(23): 2541–2551

    Article  Google Scholar 

  41. Iqbal J, Onuma Y, Ormiston J, et al. Bioresorbable scaffolds: rationale, current status, challenges, and future. European Heart Journal, 2014, 35(12): 765–776

    Article  Google Scholar 

  42. Wang Y, Zhang X. Vascular restoration therapy and bioresorbable vascular scaffold. Regenerative Biomaterials, 2014, 1(1): 49–55

    Article  Google Scholar 

  43. Waksman R, Pakala R, Kuchulakanti P K, et al. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheterization and Cardiovascular Interventions, 2006, 68(4): 607–617, discussion 618–619

    Article  Google Scholar 

  44. Ako J, Bonneau H N, Honda Y, et al. Design criteria for the ideal drug-eluting stent. The American Journal of Cardiology, 2007, 100(8B): 3M–9M

    Article  Google Scholar 

  45. Kitabata H, Waksman R, Warnack B. Bioresorbable metal scaffold for cardiovascular application: current knowledge and future perspectives. Cardiovascular Revascularization Medicine, 2014, 15(2): 109–116

    Article  Google Scholar 

  46. Di Mario C, Griffiths H, Goktekin O, et al. Drug-eluting bioabsorbable magnesium stent. Journal of Interventional Cardiology, 2004, 17(6): 391–395

    Article  Google Scholar 

  47. Ruiz-García J, Refoyo E, Cuesta-López E, et al. Comparative results between metal stent and bioresorbable scaffold at two years postimplantation. Revista Espanola de Cardiologia (English Edition), 2014, 67(1): 66–68

    Google Scholar 

  48. Echeverri D, Cabrales J R. Terapia de restauración vascular con plataformas biorreabsorbibles. La cuarta revolución. Revista Colombiana de Cardiología, 2014, 21(4): 231–240

    Article  Google Scholar 

  49. Puppi D, Chiellini F, Piras A M, et al. Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 2010, 35 (4): 403–440

    Article  Google Scholar 

  50. Williams D F. Biodegradation of surgical polymers. Journal of Materials Science, 1982, 17(5): 1233–1246

    Article  Google Scholar 

  51. Helmus M N, Gibbons D F, Cebon D. Biocompatibility: meeting a key functional requirement of next-generation medical devices. Toxicologic Pathology, 2008, 36(1): 70–80

    Article  Google Scholar 

  52. Chen G, Ushida T, Tateishi T. Scaffold design for tissue engineering. Macromolecular Bioscience, 2002, 2(2): 67–77

    Article  Google Scholar 

  53. Freier T. Biopolyesters in tissue engineering applications. Advances in Polymer Science, 2006, 203(1): 1–61

    Article  Google Scholar 

  54. Sokolsky-Papkov M, Langer R, Domb A J. Synthesis of aliphatic polyesters by polycondensation using inorganic acid as catalyst. Polymers for Advanced Technologies, 2011, 22(5): 502–511

    Article  Google Scholar 

  55. Tamai H, Igaki K, Kyo E, et al. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation, 2000, 102(4): 399–404

    Article  Google Scholar 

  56. Ceonzo K, Gaynor A, Shaffer L, et al. Polyglycolic acid-induced inflammation: role of hydrolysis and resulting complement activation. Tissue Engineering, 2006, 12(2): 301–308

    Article  Google Scholar 

  57. Brown D A, Lee EW, Loh C T, et al. A new wave in treatment of vascular occlusive disease: biodegradable stents–clinical experience and scientific principles. Journal of Vascular and Interventional Radiology, 2009, 20(3): 315–324

    Article  Google Scholar 

  58. Martin O, Averous L. Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 2001, 42(14): 6209–6219

    Article  Google Scholar 

  59. Sabir M I, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. Journal of Materials Science, 2009, 44(21): 5713–5724

    Article  Google Scholar 

  60. Pamula E, Menaszek E. In vitro and in vivo degradation of poly (L-lactide-co-glycolide) films and scaffolds. Journal of Materials Science: Materials in Medicine, 2008, 19(5): 2063–2070

    Google Scholar 

  61. Leenslag JW, Pennings A J, Bos R R, et al. Resorbable materials of poly(L-lactide): VII. In vivo and in vitro degradation. Biomaterials, 1987, 8(4): 311–314

    Article  Google Scholar 

  62. Grabow N, Schlun M, Sternberg K, et al. Mechanical properties of laser cut poly(L-lactide) micro-specimens: implications for stent design, manufacture, and sterilization. Journal of Biomechanical Engineering, 2005, 127(1): 25–31

    Article  Google Scholar 

  63. Stack R S, Califf R M, Phillips H R, et al. Interventional cardiac catheterization at Duke Medical Center. American Journal of Cardiology, 1988, 62(10 Pt 2): 3F–24F

    Article  Google Scholar 

  64. Venkatraman S, Boey F, Lao L L. Implanted cardiovascular polymers: Natural, synthetic and bio-inspired. Progress in Polymer Science, 2008, 33(9): 853–874

    Article  Google Scholar 

  65. Piao L, Deng M, Chen X, et al. Ring-opening polymerization of e-caprolactone and L-lactide using organic amino calcium catalyst. Polymer, 2003, 44(8): 2331–2336

    Article  Google Scholar 

  66. Bourantas C V, Zhang Y, Farooq V, et al. Bioresorbable scaffolds: current evidence and ongoing clinical trials. Current Cardiology Reports, 2012, 14(5): 626–634

    Article  Google Scholar 

  67. Lepu Medical. NeoVas biodegradable scaffold ongoing clinical trials overview.[EB/OL], 2015, http://finance.qq.com/a/ 20151127/030523.htm

  68. MicroPort®. Firesorb bioresorbable rapamycin target eluting coronary scaffold system completes first successful implantation in the first FIM clinical trial.[EB/OL], 2015, http://www. microportmedical.com/en/media.php?curr_page = news_details& id = 339

  69. Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials, 1991, 12(3): 292–304

    Article  Google Scholar 

  70. Pitt C G, Gu Z W. Modification of the rates of chain cleavage of poly(e-caprolactone) and related polyesters in the solid state. Journal of Controlled Release, 1987, 4(4): 283–292

    Article  Google Scholar 

  71. Heller J. Development of poly(ortho esters): a historical overview. Biomaterials, 1990, 11(9): 659–665

    Article  Google Scholar 

  72. van der Giessen W J, Lincoff A M, Schwartz R S, et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation, 1996, 94(7): 1690–1697

    Article  Google Scholar 

  73. Gao R, Shi R, Qiao S, et al. A novel polymeric local heparin delivery stent: Initial experimental study. Journal of the American College of Cardiology, 1996, 27(2): 85–86

    Article  Google Scholar 

  74. Susawa T, Shiraki K, Shimizu Y. Biodegradable intracoronary stents in adult dogs. Journal of the American College of Cardiology, 1993, 21: 483A

    Google Scholar 

  75. Tsuji T, Tamai H, Igaki K, et al. Biodegradable stents as a platform to drug loading. International Journal of Cardiovascular Interventions, 2003, 5(1): 13–16

    Article  Google Scholar 

  76. Zidar J, Lincoff A, Stack R. Biodegradable stents. Textbook of Interventional Cardiology, 1994, 2: 787–802

    Google Scholar 

  77. Ye Y W, Landau C, Meidell R S, et al. Improved bioresorbable microporous intravascular stents for gene therapy. ASAIO Journal, 1996, 42(5): M823–M827

    Article  Google Scholar 

  78. Heller J, Barr J, Ng S Y, et al. Poly(ortho esters)–their development and some recent applications. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50(1): 121–128

    Article  Google Scholar 

  79. Capancioni S, Schwach-Abdellaoui K, Kloeti W, et al. In vitro monitoring of poly (ortho ester) degradation by electron paramagnetic resonance imaging. Macromolecules, 2003, 36 (16): 6135–6141

    Article  Google Scholar 

  80. Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials, 1996, 17(2): 103–114

    Article  Google Scholar 

  81. Hofmann D, Entrialgo-Castaño M, Kratz K, et al. Knowledgebased approach towards hydrolytic degradation of polymerbased biomaterials. Advanced Materials, 2009, 21(32–33): 3237–3245

    Article  Google Scholar 

  82. Heller J. Poly (ortho esters). Berlin Heidelberg: Springer, 1993, 41–92

    Google Scholar 

  83. Heller J, Penhale DW, Fritzinger B K, et al. Controlled release of contraceptive steroids from biodegradable poly (ortho esters). Contraceptive Delivery Systems, 1983, 4(1): 43–53

    Google Scholar 

  84. Shih C, Higuchi T, Himmelstein K J. Drug delivery from catalysed erodible polymeric matrices of poly(ortho ester)s. Biomaterials, 1984, 5(4): 237–240

    Article  Google Scholar 

  85. Baei M S, Najafpour G D, Younesi H, et al. Poly(3- hydroxybutyrate) synthesis by cupriavidus necator DSMZ 545 utilizing various carbon sources. World Applied Sciences Journal, 2009, (2): 157–161

    Google Scholar 

  86. Holland S J, Jolly A M, Yasin M, et al. Polymers for biodegradable medical devices: II. Hydroxybutyrate–hydroxyvalerate copolymers: hydrolytic degradation studies. Biomaterials, 1987, 8(4): 289–295

    Google Scholar 

  87. Wang H T, Palmer H, Linhardt R J, et al. Degradation of poly (ester) microspheres. Biomaterials, 1990, 11(9): 679–685

    Article  Google Scholar 

  88. Zhao K, Deng Y, Chen G Q. Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates. Biochemical Engineering Journal, 2003, 16(2): 115–123

    Article  Google Scholar 

  89. Gogolewski S, Jovanovic M, Perren S M, et al. Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHB/VA). Journal of Biomedical Materials Research, 1993, 27(9): 1135–1148

    Article  Google Scholar 

  90. Unverdorben M, Spielberger A, Schywalsky M, et al. A polyhydroxybutyrate biodegradable stent: preliminary experience in the rabbit. Cardiovascular and Interventional Radiology, 2002, 25(2): 127–132

    Article  Google Scholar 

  91. Domb A J, Amselem S, Shah J, et al. Polyanhydrides: Synthesis and characterization. Berlin Heidelberg: Springer, 1993, 93–141

    Google Scholar 

  92. Lucas N, Bienaime C, Belloy C, et al. Polymer biodegradation: mechanisms and estimation techniques. Chemosphere, 2008, 73 (4): 429–442

    Article  Google Scholar 

  93. Davies M C, Shakesheff K M, Shard A G, et al. Surface analysis of biodegradable polymer blends of poly(sebacic anhydride) and poly(DL-lactic acid). Macromolecules, 1996, 29(6): 2205–2212

    Article  Google Scholar 

  94. Uhrich K E, Gupta A, Thomas T T, et al. Synthesis and characterization of degradable poly(anhydride-co-imides). Macromolecules, 1995, 28(7): 2184–2193

    Article  Google Scholar 

  95. Chasin M, Domb A, Ron E, et al. Polyanhydrides as drug delivery systems. In: Chasin M, Langer R, eds. Biodegradable Polymers as Drug Delivery Systems. New York: Marcel Dekker, 1990, 45: 43–70

    Google Scholar 

  96. Laurencin C, Domb A, Morris C, et al. Poly(anhydride) administration in high doses in vivo: studies of biocompatibility and toxicology. Journal of Biomedical Materials Research, 1990, 24(11): 1463–1481

    Article  Google Scholar 

  97. Jabara R. Poly-anhydride based on salicylic acid and adipic acid anhydride. Barcelona, Spain: EuroPCR, 2009

    Google Scholar 

  98. Wang S, Lu L, Yaszemski M J. Bone-tissue-engineering material poly(propylene fumarate): correlation between molecular weight, chain dimensions, and physical properties. Biomacromolecules, 2006, 7(6): 1976–1982

    Article  Google Scholar 

  99. Shung A K, Timmer M D, Jo S, et al. Kinetics of poly(propylene fumarate) synthesis by step polymerization of diethyl fumarate and propylene glycol using zinc chloride as a catalyst. Journal of Biomaterials Science: Polymer Edition, 2002, 13(1): 95–108

    Article  Google Scholar 

  100. Fisher J P, Dean D, Mikos A G. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials, 2002, 23(22): 4333–4343

    Article  Google Scholar 

  101. Suggs L J, Krishnan R S, Garcia C A, et al. In vitro and in vivo degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels. Journal of Biomedical Materials Research, 1998, 42 (2): 312–320

    Article  Google Scholar 

  102. Herold D A, Keil K, Bruns D E. Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochemical Pharmacology, 1989, 38(1): 73–76

    Article  Google Scholar 

  103. Gilding D K, Reed A M. Biodegradable polymers for use in surgery–poly(ethylene oxide) poly(ethylene terephthalate) (PEO/PET) copolymers: 1. Polymer, 1979, 20(12): 1454–1458

    Article  Google Scholar 

  104. Mody P C, Wilkes G L, Wagener K B, et al. Structure–property relationships of a new series of segmented polyether–polyester copolymers. Journal of Applied Polymer Science, 1981, 26(9): 2853–2878

    Article  Google Scholar 

  105. Pathak C P, Sawhney A S, Quinn C P, et al. Polyimidepolyethylene glycol block copolymers: synthesis, characterization, and initial evaluation as a biomaterial. Journal of Biomaterials Science: Polymer Edition, 1994, 6(4): 313–323

    Article  Google Scholar 

  106. Zhu K J, Lin X, Yang S. Preparation and properties of D, Llactide and ethylene oxide copolymer: A modifying biodegradable polymeric material. Journal of Polymer Science Part C: Polymer Letters, 1986, 24(7): 331–337

    Article  Google Scholar 

  107. Sawhney A S, Pathak C P, Hubbell J A. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(a- hydroxy acid) diacrylate macromers. Macromolecules, 1993, 26 (4): 581–587

    Article  Google Scholar 

  108. Hill-West J L, Chowdhury S M, Slepian M J, et al. Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91 (13): 5967–5971

    Article  Google Scholar 

  109. Suggs L J, Shive M S, Garcia C A, et al. In vitro cytotoxicity and in vivo biocompatibility of poly(propylene fumarate-co-ethylene glycol) hydrogels. Journal of Biomedical Materials Research, 1999, 46(1): 22–32

    Article  Google Scholar 

  110. Kohn J, Langer R. Polymerization reactions involving the side chains of a-L-amino acids. Journal of the American Chemical Society, 1987, 109(3): 817–820

    Article  Google Scholar 

  111. Ertel S I, Kohn J. Evaluation of a series of tyrosine-derived polycarbonates as degradable biomaterials. Journal of Biomedical Materials Research, 1994, 28(8): 919–930

    Article  Google Scholar 

  112. Tangpasuthadol V, Pendharkar S M, Kohn J. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part I: study of model compounds. Biomaterials, 2000, 21(23): 2371–2378

    Article  Google Scholar 

  113. Tangpasuthadol V, Pendharkar S M, Peterson R C, et al. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices. Biomaterials, 2000, 21(23): 2379–2387

    Article  Google Scholar 

  114. Pulapura S, Kohn J. Tyrosine-derived polycarbonates: backbonemodified “pseudo”-poly (amino acids) designed for biomedical applications. Biopolymers, 1992, 32(4): 411–417

    Article  Google Scholar 

  115. Bourke S L, Kohn J, Dunn M G. Preliminary development of a novel resorbable synthetic polymer fiber scaffold for anterior cruciate ligament reconstruction. Tissue Engineering, 2004, 10 (1–2): 43–52

    Article  Google Scholar 

  116. Bailey L O, Becker M L, Stephens J S, et al. Cellular response to phase-separated blends of tyrosine-derived polycarbonates. Journal of Biomedical Materials Research Part A, 2006, 76(3): 491–502

    Article  Google Scholar 

  117. Strandberg E, Zeltinger J, Schulz D G, et al. Late positive remodeling and late lumen gain contribute to vascular restoration by a non-drug eluting bioresorbable scaffold: a four-year intravascular ultrasound study in normal porcine coronary arteries. Circulation: Cardiovascular Interventions, 2012, 5(1): 39–46

    Google Scholar 

  118. Grube E. The REVA Tyrosine-derived polycarbonate bioabsorbable stent: final results from the RESORB First-in-man clinical trial and next generation designs. Transcatheter Cardiovascular Therapeutics, 2008

    Google Scholar 

  119. Witte F. Reprint of: The history of biodegradable magnesium implants: A review. Acta Biomaterialia, 2015, 23(Supp l): S28–S40

    Article  Google Scholar 

  120. Song G, Song S Z. A possible biodegradable magnesium implant material. Advanced Engineering Materials, 2007, 9(4): 298–302

    Article  Google Scholar 

  121. Vormann J. Magnesium: nutrition and metabolism. Molecular Aspects of Medicine, 2003, 24(1–3): 27–37

    Article  Google Scholar 

  122. Mult E, Haferkamp H, Niemeyer M, et al. Laser and electron beam welding of magnesium materials. Welding and Cutting, 2000, 52(8): 178–180

    Google Scholar 

  123. Marya M, Edwards G. The laser welding of magnesium alloy AZ91. Welding in the World, 2000, 44(2): 31–37

    Google Scholar 

  124. Mordike B, Ebert T. Magnesium: properties–applications–potential. Materials Science and Engineering A, 2001, 302(1): 37–45

    Article  Google Scholar 

  125. Aghion E, Bronfin B. Magnesium alloys development towards the 21st century. Materials Science Forum, 2000, 350–351: 19–30

    Article  Google Scholar 

  126. Pastor M, Zhao H, Debroy T. Continuous wave-Nd: yttrium–aluminum–garnet laser welding of AM60B magnesium alloy. Journal of Laser Applications, 2000, 12(3): 91–100

    Article  Google Scholar 

  127. Marya M, Edwards G, Marya S, et al. Fundamentals in the fusion welding of magnesium and its alloys. Proceedings of the Seventh JWS International Symposium, Kobe, 2001, 597–602

    Google Scholar 

  128. Waksman R, Pakala R, Kuchulakanti P K, et al. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheterization and Cardiovascular Interventions, 2006, 68(4): 607–617, discussion 618–619

    Article  Google Scholar 

  129. Waksman R, Pakala R, Hellinga D, et al. Effect of bioabsorbable magnesium alloy stent on neointimal formation in a porcine coronary model. European Heart Journal, 2005, 26: 417

    Google Scholar 

  130. Waksman R, Pakala R, Okabe T, et al. Efficacy and safety of absorbable metallic stents with adjunct intracoronary beta radiation in porcine coronary arteries. Journal of Interventional Cardiology, 2007, 20(5): 367–372

    Article  Google Scholar 

  131. Friedrich H E, Mordike B L. Magnesium Technology. Berlin: Springer, 2006, 788

    Google Scholar 

  132. Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet, 2007, 369(9576): 1869–1875

    Article  Google Scholar 

  133. Peeters P, Bosiers M, Verbist J, et al. Preliminary results after application of absorbable metal stents in patients with critical limb ischemia. Journal of Endovascular Therapy, 2005, 12(1): 1–5

    Article  Google Scholar 

  134. Schranz D, Zartner P, Michel-Behnke I, et al. Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn. Catheterization and Cardiovascular Interventions, 2006, 67(5): 671–673

    Article  Google Scholar 

  135. Bach F W, Schaper M, Jaschik C. Influence of lithium on hcp magnesium alloys. Materials Science Forum, 2003, 419–422: 1037–1042

    Article  Google Scholar 

  136. Kaese V, Niemeyer M, Tai P T, et al. Korrosionsschützendes Legieren von Magnesiumbasiswerkstoffen. Teil 1: Dynamische Alkalisierung der Grenzschicht-Tertiäre Legierungssysteme. Materials & Corrosion, 1999, 50(4): 191–198

    Article  Google Scholar 

  137. Magnesium Elektron Datasheet. WE43. Magnesium Elektron, 2005

  138. Günter N, Kohei K, Kenji H, et al. Magnesium-Based Alloys. Wiley-VCH Verlag GmbH & Co. KGaA, 2006

    Google Scholar 

  139. Nagels J, Stokdijk M, Rozing P M. Stress shielding and bone resorption in shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 2003, 12(1): 35–39

    Article  Google Scholar 

  140. Park J B, Bronzino J D. Biomaterials: Principles and Applications. CRC Press, 2003

    Google Scholar 

  141. Clark G C, Williams D F. The effects of proteins on metallic corrosion. Journal of Biomedical Materials Research, 1982, 16 (2): 125–134

    Article  Google Scholar 

  142. Waksman R, Pakala R, Kuchulakanti P K, et al. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheterization and Cardiovascular Interventions, 2006, 68(4): 607–617, discussion 618–619

    Article  Google Scholar 

  143. Waksman R, Pakala R, Okabe T, et al. Efficacy and safety of absorbable metallic stents with adjunct intracoronary beta radiation in porcine coronary arteries. Journal of Interventional Cardiology, 2007, 20(5): 367–372

    Article  Google Scholar 

  144. Kitabata H, Waksman R, Warnack B. Bioresorbable metal scaffold for cardiovascular application: current knowledge and future perspectives. Cardiovascular Revascularization Medicine, 2014, 15(2): 109–116

    Article  Google Scholar 

  145. Zartner P, Cesnjevar R, Singer H, et al. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheterization and Cardiovascular Interventions, 2005, 66(4): 590–594

    Article  Google Scholar 

  146. Schranz D, Zartner P, Michel-Behnke I, et al. Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn. Catheterization and Cardiovascular Interventions, 2006, 67(5): 671–673

    Article  Google Scholar 

  147. Zartner P, Buettner M, Singer H, et al. First biodegradable metal stent in a child with congenital heart disease: evaluation of macro and histopathology. Catheterization and Cardiovascular Interventions, 2007, 69(3): 443–446

    Article  Google Scholar 

  148. McMahon C J, Oslizlok P, Walsh K P. Early restenosis following biodegradable stent implantation in an aortopulmonary collateral of a patient with pulmonary atresia and hypoplastic pulmonary arteries. Catheterization and Cardiovascular Interventions, 2007, 69(5): 735–738

    Article  Google Scholar 

  149. Morice M C, Serruys P W, Sousa E J. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. The New England Journal of Medicine, 2002, 346(23): 1773–1780

    Article  Google Scholar 

  150. Se&Co B. CORRECTING & REPLACING BIOTRONIK announces positive 6-month results for dreams, the pioneering drug-eluting absorbable metal scaffold. Biomedical Market Newsletter, 5/17/2011, 257

  151. Hentze M W, Muckenthaler M U, Andrews N C. Balancing acts: molecular control of mammalian iron metabolism. Cell, 2004, 117(3): 285–297

    Article  Google Scholar 

  152. May T, Mueller P P, Weich H, et al. Establishment of murine cell lines by constitutive and conditional immortalization. Journal of Biotechnology, 2005, 120(1): 99–110

    Article  Google Scholar 

  153. Hermawan H, Alamdari H, Mantovani D, et al. Iron–manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metallurgy, 2008, 51(1): 38–45

    Article  Google Scholar 

  154. Peuster M, Hesse C, Schloo T, et al. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials, 2006, 27(28): 4955–4962

    Article  Google Scholar 

  155. Moravej M, Prima F, Fiset M, et al. Electroformed iron as new biomaterial for degradable stents: development process and structure–properties relationship. Acta Biomaterialia, 2010, 6(5): 1726–1735

    Article  Google Scholar 

  156. Zhu S, Huang N, Xu L, et al. Biocompatibility of Fe–O films synthesized by plasma immersion ion implantation and deposition. Surface and Coatings Technology, 2009, 203(10–11): 1523–1529

    Article  Google Scholar 

  157. Liu B, Zheng Y F, Ruan L. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Materials Letters, 2011, 65(3): 540–543

    Article  Google Scholar 

  158. Nie F L, Zheng Y F, Wei S C, et al. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. Biomedical Materials, 2010, 5(6): 065015

    Article  Google Scholar 

  159. Mueller P P, May T, Perz A, et al. Control of smooth muscle cell proliferation by ferrous iron. Biomaterials, 2006, 27(10): 2193–2200

    Article  Google Scholar 

  160. Francis A, Yang Y, Virtanen S, et al. Iron and iron-based alloys for temporary cardiovascular applications. Journal of Materials Science: Materials in Medicine, 2015, 26(3): 138

    Google Scholar 

  161. Peuster M, Wohlsein P, Brügmann M, et al. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart, 2001, 86(5): 563–569

    Article  Google Scholar 

  162. Schinhammer M, Hänzi A C, Löffler J F, et al. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomaterialia, 2010, 6(5): 1705–1713

    Article  Google Scholar 

  163. Hermawan H, Purnama A, Dube D, et al. Fe–Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomaterialia, 2010, 6(5): 1852–1860

    Article  Google Scholar 

  164. Moravej M, Purnama A, Fiset M, et al. Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. Acta Biomaterialia, 2010, 6 (5): 1843–1851

    Article  Google Scholar 

  165. Liu B, Zheng Y F. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomaterialia, 2011, 7(3): 1407–1420

    Article  Google Scholar 

  166. Lin WJ, Zhang D Y, Zhang G, et al. Design and characterization of a novel biocorrodible iron-based drug-eluting coronary scaffold. Materials & Design, 2015, 91: 72–79

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Feng Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, LD., Li, Z., Pan, Y. et al. A review on biodegradable materials for cardiovascular stent application. Front. Mater. Sci. 10, 238–259 (2016). https://doi.org/10.1007/s11706-016-0344-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-016-0344-x

Keywords

Navigation