Skip to main content
Log in

Silk fibroin-based scaffolds for tissue engineering

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Silk fibroin (SF) from the Bombyx mori silkworm exhibits attractive potential applications as biomechanical materials, due to its unique mechanical and biological properties. This review outlines the structure and properties of SF, including of its biocompatibility and biodegradability. It highlights recent researches on the fabrication of various SF-based composites scaffolds that are promising for tissue engineering applications, and discusses synthetic methods of various SF-based composites scaffolds and valuable approaches for controlling cell behaviors to promote the tissue repair. The function of extracellular matrices and their interaction with cells are also reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sirichaisit J, Young R J, Vollrath F. Molecular deformation in spider dragline silk subjected to stress. Polymer, 2000, 41(3): 1223–1227

    Article  CAS  Google Scholar 

  2. Demura M, Asakura T, Kuroo T. Immobilization of biocatalysts with Bombyx mori silk fibroin by several kinds of physical treatment and its application to glucose sensors. Biosensors, 1989, 4(6): 361–372

    Article  CAS  Google Scholar 

  3. Lawrence B D, Cronin-Golomb M, Georgakoudi I, et al. Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules, 2008, 9(4): 1214–1220

    Article  CAS  Google Scholar 

  4. Leal-Egaña A, Scheibel T. Silk-based materials for biomedical applications. Biotechnology and Applied Biochemistry, 2010, 55(3): 155–167

    Article  Google Scholar 

  5. Murphy A R, Kaplan D L. Biomedical applications of chemically-modified silk fibroin. Journal of Materials Chemistry, 2009, 19(36): 6443–6450

    Article  CAS  Google Scholar 

  6. Porter D, Vollrath F. Silk as a biomimetic ideal for structural polymers. Advanced Materials, 2009, 21(4): 487–492

    Article  CAS  Google Scholar 

  7. Wang Y, Kim H J, Vunjak-Novakovic G, et al. Stem cell-based tissue engineering with silk biomaterials. Biomaterials, 2006, 27(36): 6064–6082

    Article  CAS  Google Scholar 

  8. Wang Y, Blasioli D J, Kim H J, et al. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials, 2006, 27(25): 4434–4442

    Article  CAS  Google Scholar 

  9. Hofmann S, Wong Po Foo C T, Rossetti F, et al. Silk fibroin as an organic polymer for controlled drug delivery. Journal of Controlled Release, 2006, 111(1–2): 219–227

    Article  CAS  Google Scholar 

  10. Wenk E, Wandrey A J, Merkle H P, et al. Silk fibroin spheres as a platform for controlled drug delivery. Journal of Controlled Release, 2008, 132(1): 26–34

    Article  CAS  Google Scholar 

  11. Chen J, Altman G H, Karageorgiou V, et al. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. Journal of Biomedical Materials Research Part A, 2003, 67(2): 559–570

    Google Scholar 

  12. Liivak O, Blye A, Shah N, et al. A microfabricated wet-spinning apparatus to spin fibers of silk proteins. Structure-property correlations. Macromolecules, 1998, 31(9): 2947–2951

    Article  CAS  Google Scholar 

  13. Arai T, Freddi G, Innocenti R, et al. Biodegradation of Bombyx mori silk fibroin fibers and films. Journal of Applied Polymer Science, 2004, 91(4): 2383–2390

    Article  CAS  Google Scholar 

  14. Jin H J, Park J, Karageorgiou V, et al. Water-stable silk films with reduced β-sheet content. Advanced Functional Materials, 2005, 15(8): 1241–1247

    Article  CAS  Google Scholar 

  15. Langer R, Vacanti J P. Tissue engineering. Science, 1993, 260(5110): 920–926

    Article  CAS  Google Scholar 

  16. Nerem R M, Sambanis A. Tissue engineering: from biology to biological substitutes. Tissue Engineering, 1995, 1(1): 3–13

    Article  CAS  Google Scholar 

  17. Mondal M, Trivedy K, Nirmal K S. The silk proteins, sericin and fibroin in silkworm, Bombyx mori linn. — a review. Caspian Journal of Environmental Sciences, 2007, 5(2): 63–76

    Google Scholar 

  18. Ogawa S, Tomita M, Shimizu K, et al. Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon: production of recombinant human serum albumin. Journal of Biotechnology, 2007, 128(3): 531–544

    Article  CAS  Google Scholar 

  19. Chen X, Shao Z, Knight D P, et al. Conformation transition kinetics of Bombyx mori silk protein. Proteins: Structure, Function, and Bioinformatics, 2007, 68(1): 223–231

    Article  CAS  Google Scholar 

  20. Harris M, Johnson T B. Study of silk fibroin in the dispersed state. Industrial & Engineering Chemistry, 1930, 22(9): 965–967

    Article  CAS  Google Scholar 

  21. Harris M, Johnson T B. Study of the fibroin from silk in the isoelectric region. Industrial & Engineering Chemistry, 1930, 22(5): 539–542

    Article  CAS  Google Scholar 

  22. Kay L M, Schroeder WA. The chromatographic separation and identification of some peptides in partial hydrolysates of silk fibroin. Journal of the American Chemical Society, 1954, 76(13): 3564–3568

    Article  CAS  Google Scholar 

  23. Kay LM, Schroeder WA, Munger N, et al. The chromatographic separation and identification of some peptides in partial hydrolysates of tussah silk fibroin. Journal of the American Chemical Society, 1956, 78(11): 2430–2434

    Article  CAS  Google Scholar 

  24. Schroeder W A, Kay L M, Lewis B, et al. The amino acid composition of Bombyx mori silk fibroin and of tussah silk fibroin. Journal of the American Chemical Society, 1955, 77(14): 3908–3913

    Article  CAS  Google Scholar 

  25. Rousseau M E, Beaulieu L, Lefèvre T, et al. Characterization by Raman microspectroscopy of the strain-induced conformational transition in fibroin fibers from the silkworm Samia cynthia ricini. Biomacromolecules, 2006, 7(9): 2512–2521

    Article  CAS  Google Scholar 

  26. Hu B W, Zhou P, Noda I, et al. Generalized two-dimensional correlation analysis of NMR and Raman spectra for structural evolution characterizations of silk fibroin. The Journal of Physical Chemistry B, 2006, 110(36): 18046–18051

    Article  CAS  Google Scholar 

  27. Hernandez Cruz D, Rousseau M-E, West MM, et al. Quantitative mapping of the orientation of fibroin β-sheets in B. mori cocoon fibers by scanning transmission X-ray microscopy. Biomacromolecules, 2006, 7(3): 836–843

    Article  CAS  Google Scholar 

  28. Tanaka C, Takahashi R, Asano A, et al. Structural analyses of Anaphe silk fibroin and several model peptides using 13C NMR and X-ray diffraction methods. Macromolecules, 2008, 41(3): 796–803

    Article  CAS  Google Scholar 

  29. Ha S W, Gracz H S, Tonelli A E, et al. Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin. Biomacromolecules, 2005, 6(5): 2563–2569

    Article  CAS  Google Scholar 

  30. Asakura T, Watanabe Y, Itoh T. NMR of silk fibroin. 3. Assignment of carbonyl carbon resonances and their dependence on sequence and conformation in Bombyx mori silk fibroin using selective isotopic labeling. Macromolecules, 1984, 17(11): 2421–2426

    Article  CAS  Google Scholar 

  31. Ohgo K, Bagusat F, Asakura T, et al. Investigation of structural transition of regenerated silk fibroin aqueous solution by Rheo-NMR spectroscopy. Journal of the American Chemical Society, 2008, 130(12): 4182–4186

    Article  CAS  Google Scholar 

  32. Demura M, Minami M, Asakura T, et al. Structure of Bombyx mori silk fibroin based on solid-state NMR orientational constraints and fiber diffraction unit cell parameters. Journal of the American Chemical Society, 1998, 120(6): 1300–1308

    Article  CAS  Google Scholar 

  33. Zhou C Z, Confalonieri F, Jacquet M, et al. Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins: Structure, Function, and Bioinformatics, 2001, 44(2): 119–122

    Article  CAS  Google Scholar 

  34. Heslot H. Artificial fibrous proteins: a review. Biochimie, 1998, 80(1): 19–31

    Article  CAS  Google Scholar 

  35. Kratky O, Schauenstein E, Sekora A. An unstable lattice in silk fibroin. Nature, 1950, 165(4191): 319–320

    Article  CAS  Google Scholar 

  36. Ambrose E J, Bamford C H, Elliott A, et al. Water soluble silk: an α-protein. Nature, 1951, 167(4242): 264–265

    Article  CAS  Google Scholar 

  37. Carlisle C H, Bernal J D. Crystallography. Annual Reports on the Progress of Chemistry, 1955, 52: 380–403

    Article  Google Scholar 

  38. Kratky O. Zur molekularen morphologie des seidenfibroins. Monatshefte Für Chemie — Chemical Monthly, 1956, 87(2): 269–280

    Article  CAS  Google Scholar 

  39. Warwicker J O. Comparative studies of fibroins. II. The crystal structures of various fibroins. Journal of Molecular Biology, 1960, 2(6): 350–362

    Article  CAS  Google Scholar 

  40. Valluzzi R, Gido S P, Zhang W, et al. Trigonal crystal structure of Bombyx mori silk incorporating a threefold helical chain conformation found at the air-water interface. Macromolecules, 1996, 29(27): 8606–8614

    Article  CAS  Google Scholar 

  41. Sohn S, Strey H H, Gido S P. Phase behavior and hydration of silk fibroin. Biomacromolecules, 2004, 5(3): 751–757

    Article  CAS  Google Scholar 

  42. Mercer E H. Studies on the soluble proteins of the silk gland of the silkworm, Bombyx mori. Textile Research Journal, 1954, 24(2): 135–145

    Article  CAS  Google Scholar 

  43. Lu Q, Feng Q, Hu K, et al. Preparation of three-dimensional fibroin/collagen scaffolds in various pH conditions. Journal of Materials Science: Materials in Medicine, 2008, 19(2): 629–634

    Article  CAS  Google Scholar 

  44. Zhou P, Xie X, Knight D P, et al. Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and 13C solid-state NMR. Biochemistry, 2004, 43(35): 11302–11311

    Article  CAS  Google Scholar 

  45. Cunniff P M, Fossey S A, Auerbach M A, et al. Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polymers for Advanced Technologies, 1994, 5(8): 401–410

    Article  CAS  Google Scholar 

  46. Pérez-Rigueiro J, Viney C, Llorca J, et al. Mechanical properties of single-brin silkworm silk. Journal of Applied Polymer Science, 2000, 75(10): 1270–1277

    Article  Google Scholar 

  47. Jiang C, Wang X, Gunawidjaja R, et al. Mechanical properties of robust ultrathin silk fibroin films. Advanced Functional Materials, 2007, 17(13): 2229–2237

    Article  CAS  Google Scholar 

  48. Pins G D, Christiansen D L, Patel R, et al. Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophysical Journal, 1997, 73(4): 2164–2172

    Article  CAS  Google Scholar 

  49. Simmons A, Ray E, Jelinski L W. Solid-state 13C NMR of Nephila lavipes dragline silk establishes structure and identity of crystalline regions. Macromolecules, 1994, 27(18): 5235–5237

    Article  CAS  Google Scholar 

  50. Parkhe A D, Seeley S K, Gardner K, et al. Structural studies of spider silk proteins in the fiber. Journal of Molecular Recognition, 1997, 10(1): 1–6

    Article  CAS  Google Scholar 

  51. van Beek J D, Hess S, Vollrath F, et al. The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16): 10266–10271

    Article  CAS  Google Scholar 

  52. Giesa T, Arslan M, Pugno NM, et al. Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. Nano Letters, 2011, 11(11): 5038–5046

    Article  CAS  Google Scholar 

  53. Vollrath F. Spiders’webs. Current Biology, 2005, 15(10): 364–365

    Article  CAS  Google Scholar 

  54. Akai H, Nagashima T, Aoyagi S. Ultrastructure of posterior silk gland cells and liquid silk in Indian tasar silkworm, Antheraea mylitta drury (Lepidoptera: Saturniidae). International Journal of Insect Morphology and Embryology, 1993, 22(5): 497–506

    Article  Google Scholar 

  55. Hu K, Cui F, Lv Q, et al. Preparation of fibroin/recombinant human-like collagen scaffold to promote fibroblasts compatibility. Journal of Biomedical Materials Research Part A, 2008, 84A(2): 483–490

    Article  CAS  Google Scholar 

  56. Lv Q, Hu K, Feng Q L, et al. Growth of fibroblast and vascular smooth muscle cells in fibroin/collagen scaffold. Materials Science and Engineering C, 2009, 29(7): 2239–2245

    Article  CAS  Google Scholar 

  57. Fan H, Liu H, Toh S L, et al. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials, 2009, 30(28): 4967–4977

    Article  CAS  Google Scholar 

  58. Altman G H, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials, 2003, 24(3): 401–416

    Article  CAS  Google Scholar 

  59. Peleg H, Rao U N M, Emrich L J. An experimental comparison of suture materials for tracheal and bronchial anastomoses. The Thoracic and Cardiovascular Surgeon, 1986, 34(6): 384–388

    Article  CAS  Google Scholar 

  60. Soong H K, Kenyon K R. Adverse reactions to virgin silk sutures in cataract surgery. Ophthalmology, 1984, 91(5): 479–483

    CAS  Google Scholar 

  61. Wen C M, Ye S T, Zhou L X, et al. Silk-induced asthma in children: a report of 64 cases. Annals of Allergy, 1990, 65(5): 375–378

    CAS  Google Scholar 

  62. Li X G, Wu LY, Huang MR, et al. Conformational transition and liquid crystalline state of regenerated silk fibroin in water. Biopolymers, 2008, 89(6): 497–505

    Article  CAS  Google Scholar 

  63. Yang Y, Shao Z, Chen X, et al. Optical spectroscopy to investigate the structure of regenerated Bombyx mori silk fibroin in solution. Biomacromolecules, 2004, 5(3): 773–779

    Article  CAS  Google Scholar 

  64. Zhao C, Wu X, Zhang Q, et al. Enzymatic degradation of Antheraea pernyi silk fibroin 3D scaffolds and fibers. International Journal of Biological Macromolecules, 2011, 48(2): 249–255

    Article  CAS  Google Scholar 

  65. Horan R L, Antle K, Collette A L, et al. In vitro degradation of silk fibroin. Biomaterials, 2005, 26(17): 3385–3393

    Article  CAS  Google Scholar 

  66. Gunatillake P A, Adhikari R. Biodegradable synthetic polymers for tissue engineering. European Cells and Materials, 2003, 5: 1–16

    CAS  Google Scholar 

  67. Zhang J-G, Mo X-M. Current research on electrospinning of silk fibroin and its blends with natural and synthetic biodegradable polymers. Frontiers of Materials Science, 2013, 7(2): 129–142

    Article  Google Scholar 

  68. Ren Y J, Zhou Z Y, Liu B F, et al. Preparation and characterization of fibroin/hyaluronic acid composite scaffold. International Journal of Biological Macromolecules, 2009, 44(4): 372–378

    Article  CAS  Google Scholar 

  69. Lun B, Jianmei X, Qilong S, et al. On the growth model of the capillaries in the porous silk fibroin films. Journal of Materials Science: Materials in Medicine, 2007, 18(10): 1917–1921

    Article  CAS  Google Scholar 

  70. Lu Q, Zhang S, Hu K, et al. Cytocompatibility and blood compatibility of multifunctional fibroin/collagen/heparin scaffolds. Biomaterials, 2007, 28(14): 2306–2313

    Article  CAS  Google Scholar 

  71. Lv Q, Hu K, Feng Q, et al. Preparation and characterization of PLA/fibroin composite and culture of HepG2 (human hepatocellular liver carcinoma cell line) cells. Composites Science and Technology, 2007, 67(14): 3023–3030

    Article  CAS  Google Scholar 

  72. Kong X, Sun X, Cui F, et al. Effect of solute concentration on fibroin regulated biomineralization of calcium phosphate. Materials Science and Engineering C, 2006, 26(4): 639–643

    Article  CAS  Google Scholar 

  73. Hu K, Lv Q, Cui F Z, et al. Biocompatible fibroin blended films with recombinant human-like collagen for hepatic tissue engineering. Journal of Bioactive and Compatible Polymers, 2006, 21(1): 23–37

    Article  CAS  Google Scholar 

  74. Lv Q, Hu K, Feng Q L, et al. Fibroin/collagen hybrid hydrogels with crosslinking method: preparation, properties, and cytocompatibility. Journal of Biomedical Materials Research Part A, 2008, 84A(1): 198–207

    Article  CAS  Google Scholar 

  75. O’Connor S M, Andreadis J D, Shaffer K M, et al. Immobilization of neural cells in three-dimensional matrices for biosensor applications. Biosensors & Bioelectronics, 2000, 14(10–11): 871–881

    Article  Google Scholar 

  76. Vasconcelos A, Freddi G, Cavaco-Paulo A. Biodegradable materials based on silk fibroin and keratin. Biomacromolecules, 2008, 9(4): 1299–1305

    Article  CAS  Google Scholar 

  77. Zoccola M, Aluigi A, Vineis C, et al. Study on cast membranes and electrospun nanofibers made from keratin/fibroin blends. Biomacromolecules, 2008, 9(10): 2819–2825

    Article  CAS  Google Scholar 

  78. Yang Y, Ding F, Wu J, et al. Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials, 2007, 28(36): 5526–5535

    Article  CAS  Google Scholar 

  79. Hofmann S, Hagenmüller H, Koch A M, et al. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials, 2007, 28(6): 1152–1162

    Article  CAS  Google Scholar 

  80. Meinel L, Fajardo R, Hofmann S, et al. Silk implants for the healing of critical size bone defects. Bone, 2005, 37(5): 688–698

    Article  CAS  Google Scholar 

  81. Meinel L, Betz O, Fajardo R, et al. Silk based biomaterials to heal critical sized femur defects. Bone, 2006, 39(4): 922–931

    Article  CAS  Google Scholar 

  82. Wang Y, Bella E, Lee C S D, et al. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Biomaterials, 2010, 31(17): 4672–4681

    Article  CAS  Google Scholar 

  83. Wang Y, Kim U J, Blasioli D J, et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials, 2005, 26(34): 7082–7094

    Article  CAS  Google Scholar 

  84. Liu H, Fan H, Toh S L, et al. A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds. Biomaterials, 2008, 29(10): 1443–1453

    Article  CAS  Google Scholar 

  85. Nakazawa Y, Sato M, Takahashi R, et al. Development of smalldiameter vascular grafts based on silk fibroin fibers from Bombyx mori for vascular regeneration. Journal of Biomaterials Science, Polymer Edition, 2011, 22(1–3): 195–206

    Article  CAS  Google Scholar 

  86. Meinel L, Karageorgiou V, Hofmann S, et al. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. Journal of Biomedical Materials Research Part A, 2004, 71(1): 25–34

    Google Scholar 

  87. Huang W, Begum R, Barber T, et al. Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats. Biomaterials, 2012, 33(1): 59–71

    Article  CAS  Google Scholar 

  88. Wei Y, Gong K, Zheng Z, et al. Chitosan/silk fibroin-based tissue-engineered graft seeded with adipose-derived stem cells enhances nerve regeneration in a rat model. Journal of Materials Science: Materials in Medicine, 2011, 22(8): 1947–1964

    Article  CAS  Google Scholar 

  89. Silva S S, Motta A, Rodrigues M T, et al. Novel genipin-crosslinked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules, 2008, 9(10): 2764–2774

    Article  CAS  Google Scholar 

  90. Roh D H, Kang S Y, Kim J Y, et al. Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat. Journal of Materials Science: Materials in Medicine, 2006, 17(6): 547–552

    Article  CAS  Google Scholar 

  91. Yang M C, Chi N H, Chou N K, et al. The influence of rat mesenchymal stem cell CD44 surface markers on cell growth, fibronectin expression, and cardiomyogenic differentiation on silk fibroin — Hyaluronic acid cardiac patches. Biomaterials, 2010, 31(5): 854–862

    Article  CAS  Google Scholar 

  92. Rusa C C, Bridges C, Ha S-W, et al. Conformational changes induced in Bombyx mori silk fibroin by cyclodextrin inclusion complexation. Macromolecules, 2005, 38(13): 5640–5646

    Article  CAS  Google Scholar 

  93. Zhang X, Baughman C B, Kaplan D L. In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials, 2008, 29(14): 2217–2227

    Article  CAS  Google Scholar 

  94. Zhang X, Wang X, Keshav V, et al. Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts. Biomaterials, 2009, 30(19): 3213–3223

    Article  CAS  Google Scholar 

  95. Jin H J, Park J, Valluzzi R, et al. Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide). Biomacromolecules, 2004, 5(3): 711–717

    Article  CAS  Google Scholar 

  96. Li C, Vepari C, Jin H J, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials, 2006, 27(16): 3115–3124

    Article  CAS  Google Scholar 

  97. Wang C Y, Zhang K H, Fan C Y, et al. Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomaterialia, 2011, 7(2): 634–643

    Article  CAS  Google Scholar 

  98. Sahoo S, Toh S L, Goh J C H. A bFGF-releasing silk/PLGAbased biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials, 2010, 31(11): 2990–2998

    Article  CAS  Google Scholar 

  99. Bray L J, George K A, Ainscough S L, et al. Human corneal epithelial equivalents constructed on Bombyx mori silk fibroin membranes. Biomaterials, 2011, 32(22): 5086–5091

    Article  CAS  Google Scholar 

  100. Gil E S, Hudson S M. Effect of silk fibroin interpenetrating networks on swelling/deswelling kinetics and rheological properties of poly(N-isopropylacrylamide) hydrogels. Biomacromolecules, 2007, 8(1): 258–264

    Article  CAS  Google Scholar 

  101. Kweon H, Ha H C, Um I C, et al. Physical properties of silk fibroin/chitosan blend films. Journal of Applied Polymer Science, 2001, 80(7): 928–934

    Article  CAS  Google Scholar 

  102. Altman A M, Yan Y, Matthias N, et al. Human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells, 2009, 27(1): 250–258

    Article  CAS  Google Scholar 

  103. Foss C, Merzari E, Migliaresi C, et al. Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering. Biomacromolecules, 2013, 14(1): 38–47

    Article  CAS  Google Scholar 

  104. Whitesides G M, Wong A P. The intersection of biology and materials science. MRS Bulletin, 2006, 31(1): 19–27

    Article  CAS  Google Scholar 

  105. Hu K, Lv Q, Cui F Z, et al. A novel poly (L-lactide) (PLLA)/ fibroin hybrid scaffold to promote hepatocyte viability and decrease macrophage responses. Journal of Bioactive and Compatible Polymers, 2007, 22(4): 395–410

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Can Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, ZH., Ji, SC., Wang, YZ. et al. Silk fibroin-based scaffolds for tissue engineering. Front. Mater. Sci. 7, 237–247 (2013). https://doi.org/10.1007/s11706-013-0214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-013-0214-8

Keywords

Navigation