Skip to main content
Log in

Overview of the amorphous precursor phase strategy in biomineralization

  • Review Article
  • Published:
Frontiers of Materials Science in China Aims and scope Submit manuscript

Abstract

It was assumed for a long time that organisms produce minerals directly from a saturated solution. A few exceptions were known, including the well documented mineralized teeth of the chiton. In 1997 it was demon-strated that sea urchin larvae form their calcitic spicules by first depositing a highly unstable mineral phase called amorphous calcium carbonate. This strategy has since been shown to be used by animals from other phyla and for both aragonite and calcite. Recent evidence shows that vertebrate bone mineral may also be formed via a precursor phase of amorphous calcium carbonate. This strategy thus appears to be widespread. The challenge now is to understand the mechanisms by which these unstable phases are initially formed, how they are temporarily stabilized and how they are destabilized and transform into a crystalline mature product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weiner S, Sagi I, Addadi L. Choosing the path less traveled. Science, 2005, 309: 1027–1028

    Article  PubMed  CAS  Google Scholar 

  2. Ehrenberg C G. Phosphosaures kalk in den zähnen und kieselerde in dem panzer von infusorein. Ann Phys Lpz, 1834, 32: 574–576

    Google Scholar 

  3. Minchin E A. Sponge-spicules. Summary of present knowledge. Ergebn Fortschr Zoologie, 1909, 2: 171–274

    Google Scholar 

  4. Towe K M, Lowenstam H A. Ultrastructure and development of iron mineralization in the radular teeth of Cryptochiton stelleri (Mollusca). Journal of Ultrastructure Research, 1967, 17: 1–13

    Article  PubMed  CAS  Google Scholar 

  5. Lowenstam H A. Magnetite in denticle capping in recent chitons (Polyplacophera). Geological Society of America Bulletin, 1962, 73: 435–438

    Article  CAS  Google Scholar 

  6. Kirschvink J L, Lowenstam H A. Mineralization and magnetization of chiton teeth: paleomagnetic, sedimentologic, and biologic implications of organic magnetite. Earth and Planetary Science Letters, 1979, 44: 193–204

    Article  ADS  Google Scholar 

  7. Brecevic L J, Furedi-Milhofer H. Precipitation of calcium phosphates from electrolyte solutions. II. The formation and transformation of precipitates. Calcified Tissue Research, 1972, 10: 82–90

    Article  PubMed  CAS  Google Scholar 

  8. Glimcher M J. Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Philosophical Transactions of the Royal Society B, 1984, B304: 479–508

    Article  ADS  Google Scholar 

  9. Grynpas M D, Bonar L C, Glimcher M J. Failure to detect an amorphous calcium-phosphate solid phase in bone mineral: a radial distribution function study. Calcified Tissue International, 1984, 36: 291–301

    Article  PubMed  CAS  Google Scholar 

  10. Brown W E, Chow L C. Chemical properties of bone mineral. Annual Review of Materials Science, 1976, 6: 213–236

    Article  ADS  CAS  Google Scholar 

  11. Brecevic L, Nielsen A E. Solubility of amorphous calcium carbonate. Journal of Crystal Growth, 1989, 98: 504–510

    Article  ADS  CAS  Google Scholar 

  12. Clarkson J R, Price T J, Adams C J. Role of metastable phases in the spontaneous precipitation of calcium carbonate. Journal of the Chemical Society, Faraday Transactions, 1992, 88: 243–249

    Article  CAS  Google Scholar 

  13. Addadi L, Raz S, Weiner S. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Advanced Materials, 2003, 15: 959–970

    Article  CAS  Google Scholar 

  14. Lowenstam H A, Weiner S. On Biomineralization. New York: Oxford University Press, 1989

    Google Scholar 

  15. Golubic S, Campbell S E. Biologically-formed aragonite concretions in marine Rivularia. In: Monty C L V. Phanerozoic Stromatolites. New York: Springer-Verlag, 1980, 209–229

    Google Scholar 

  16. Lowenstam H A. Mineralization processes in monerans and vprotoctists. In: Leadbeater B S C, Riding R. Biomineralization of Lower Plants and Animals. Oxford: Clarendon Press, 1986, 1–17

    Google Scholar 

  17. Mann S. Structure, morphology, and crystal growth of bacterial magnetite. In: Kirschvink J L, Jones D S, MacFadden B J. Magnetite Biomineralization and Magnetoreception in Organisms. New York: Plenum Press, 1985, 311–332

    Google Scholar 

  18. Hallberg R O. Iron and zinc sulfides formed in a continuous culture of sulfate reducing bacteria. Neues Jahrbuch fur Mineralogie-Monatshefte, 1972, 481–500

  19. Lowenstam H A, Weiner S. Transformation of amorphous calcium phosphate to crystalline dahllite in the radular teeth of chitons. Science, 1985, 227: 51–53

    Article  PubMed  ADS  CAS  Google Scholar 

  20. Kessel E. Über die Schale von Viviparus viviparus L. und Viviparus fasciatus Mull. Z Morphol Okol Tiere, 1933, 27: 9–198

    Article  Google Scholar 

  21. Nelson D G A, Wood D J, Barry J C. The structure of (100) defects in carbonated apatite crystallites: a high resolution electron microscope study. Ultramicroscopy, 1986, 19: 253–266

    Article  PubMed  CAS  Google Scholar 

  22. Beniash E, Aizenberg J, Addadi L, et al. Amorphous calcium carbonate transforms into calcite during sea-urchin larval spicule growth. Proceedings of the Royal Society of London, Series B, 1997, 264: 461–465

    Article  ADS  CAS  Google Scholar 

  23. Berman A, Hanson J, Leiserowitz L, et al. Biological control of crystal texture: Awidespread strategy for adapting crystal properties to function. Science, 1993, 259: 776–779

    Article  PubMed  ADS  Google Scholar 

  24. Gueta R, Natan A, Addadi L, et al. Local atomic order and infrared spectra of biogenic calcite. Angewandte Chemie — International Edition, 2006, 46: 291–294

    Google Scholar 

  25. Raz S, Hamilton P C, Wilt F H, et al. The transient phase of amorphous calcium carbonate in sea urchin larval spicules: The involvement of proteins and magnesium ions in its formation and stabilization. Advanced Functional Materials, 2003, 13: 480–486

    Article  CAS  Google Scholar 

  26. Politi Y, Levi-Kalisman Y, Raz S, et al. Strucutural characterization of the transient calcium carbonate amorphous precursor phase in sea urchin embryos. Advanced Functional Materials, 2006, 16: 1289–1298

    Article  CAS  Google Scholar 

  27. Politi Y, Arad T, Klein E, et al. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science, 2004, 306: 1161–1164

    Article  PubMed  ADS  CAS  Google Scholar 

  28. Politi Y, Metzler R A, Abrecht M, et al. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 17362–17366

    Article  PubMed  ADS  Google Scholar 

  29. Ma Y, Weiner S, Addadi L. Mineral deposition and crystal growth in the continuously forming teeth of sea urchins. Advanced Functional Materials, 2007, 17: 2693–2700

    Article  CAS  Google Scholar 

  30. Marxen J C, Becker W, Finke D, et al. Early mineralization in Biomphalaria glabrata: microscopic and structural results. Journal of Molluscan Studies, 2003, 69: 113–121

    Article  Google Scholar 

  31. Hasse B, Ehrenberg H, Marxen J, et al. Calcium carbonate modification in the mineralized shell of the freshwater snail Biomphalaria glabrata. Chemistry — A European Journal, 2000, 6: 3679–3685

    Article  CAS  Google Scholar 

  32. Weiss I M, Tuross N, Addadi L, et al. Mollusk larval shell formation: amorphous calcium carbonate is a precursor for aragonite. Journal of Experimental Zoology, 2002, 293: 478–491

    Article  PubMed  CAS  Google Scholar 

  33. Nassif N, Pinna N, Gehrke N, et al. Amorphous layer around aragonite platelets in nacre. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 12563–12655

    Article  CAS  Google Scholar 

  34. Chave K E. Aspects of the biogeochemistry of magnesium I. Calcareous marine organisms. Journal of Geology, 1954, 62: 266–283

    Article  CAS  ADS  Google Scholar 

  35. Vinogradov A P. The Elementary Chemical Composition of Marine Organisms. Sears Foundation for Marine Research II. New Haven: Yale University Press, 1953

    Google Scholar 

  36. Dillaman R, Hequembourg S, Gay M. Early pattern of calcification in the dorsal carapace of the blue crab, Callinectes sapidus. Journal of Morphology, 2005, 263: 356–374

    Article  PubMed  Google Scholar 

  37. Levi-Kalisman Y, Raz S, Weiner S, et al. X-Ray absorption spectroscopy studies on the structure of a biogenic “amorphous” calcium carbonate phase. Journal of the Chemical Society — Dalton Transactions, 2000, 3977–3982

  38. Darwin C. The Formation of Vegetable Mould, Through the Action of Worms, with Observations on Their Habits. London: John Murray, 1881

    Google Scholar 

  39. Lee M R, Hodson M E, Langworthy G N. Crystallization of calcite from amorphous calcium carbonate: earthworms show the way. Mineralogical Magazine, 2008, 71: 257–261

    Article  CAS  Google Scholar 

  40. Gago-Duport L, Briones M J I, Rodriguez J B, et al. Amorphous calcium carbonate biomineralization in the earthworm’s calciferous gland: pathways to the formation of crystalline phases. Journal of Structural Biology, 2008, 162: 422–435

    Article  PubMed  CAS  Google Scholar 

  41. Meibom A, Cuif J P, Hillion F, et al. Distribution of magnesium in a coral skeleton. Journal of Geophysical Research, 2004, 31: L23306–23310

    Article  Google Scholar 

  42. Crane N J, Popescu V, Morris M D, et al. Raman spectroscopic evidence for octacalcium phosphate and other mineral species deposited during intramembraneous mineralization. Bone, 2006, 39: 431–433

    Article  CAS  Google Scholar 

  43. Mahamid J, Sharir A, Addadi L, et al. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 12748–12753

    Article  PubMed  ADS  Google Scholar 

  44. Sone E D, Weiner S, Addadi L. Biomineralization of limpet teeth: A cryo-TEM study of the organic matrix and the onset of mineral deposition. Journal of Structural Biology, 2007, 158: 428–444

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Weiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiner, S., Mahamid, J., Politi, Y. et al. Overview of the amorphous precursor phase strategy in biomineralization. Front. Mater. Sci. China 3, 104–108 (2009). https://doi.org/10.1007/s11706-009-0036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-009-0036-x

Keywords

Navigation