Skip to main content
Log in

Recent advances in cycloaddition of CO2 with epoxides: halogen-free catalysis and mechanistic insights

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The atom-economical cycloaddition of CO2 with epoxides to synthesize cyclic carbonates is a promising route for valuable utilization of CO2. Halogenide such as alkali metal halides and quaternary ammonium salt have been developed as the efficient catalysts. However, the spilled halogen causes equipment corrosion and affects the product purity. To address these concerns, the halogen-free cycloaddition of CO2 with epoxides has always been desired. In this review, we systematically discussed the halogen-free catalysis for cycloaddition of CO2 with epoxides from the mechanistic insights, aiming to promote the development of efficient halogen-free catalysts. Two types of catalysts, i.e., alternatives of halogen nucleophiles for epoxide activation, and bifunctional catalysts with Lewis acid-base sites for synergistic activation of CO2 and epoxides are summarized and emphasized. Specially, metal oxides as the potential halogen-free catalysts are highlighted due to their flexible acid-base sites for synergistic activation of CO2 and epoxides, facile preparation, and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Sakakura T, Choi J C, Yasuda H. Transformation of carbon dioxide. Chemical Reviews, 2007, 107(6): 2365–2387

    Article  CAS  PubMed  Google Scholar 

  2. Sahoo P K, Zhang Y, Das S. CO2-promoted reactions: an emerging concept for the synthesis of fine chemicals and pharmaceuticals. ACS Catalysis, 2021, 11(6): 3414–3442

    Article  CAS  Google Scholar 

  3. Schilling W, Das S. CO2-catalyzed/promoted transformation of organic functional groups. Tetrahedron Letters, 2018, 59(43): 3821–3828

    Article  CAS  Google Scholar 

  4. Xu M T, Jupp A R, Stephan D W. Stoichiometric reactions of CO2 and indium-silylamides and catalytic synthesis of ureas. Angewandte Chemie International Edition, 2017, 56(45): 14277–14281

    Article  CAS  PubMed  Google Scholar 

  5. Chen C, Zhu X R, Wen X J, Zhou Y Y, Zhou L, Li H, Tao L, Li Q L, Du S Q, Liu T T, Yan D, Xie C, Zou Y, Wang Y, Chen R, Huo J, Li Y, Cheng J, Su H, Zhao X, Cheng W, Liu Q, Lin H, Luo J, Chen J, Dong M, Cheng K, Li C, Wang S. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nature Chemistry, 2020, 12(8): 717–724

    Article  CAS  PubMed  Google Scholar 

  6. Hu J T, Yu L, Deng J, Wang Y, Cheng K, Ma C, Zhang Q H, Wen W, Yu S S, Pan Y, Yang J, Ma H, Qi F, Wang Y, Zheng Y, Chen M, Huang R, Zhang S, Zhao Z, Mao J, Meng X, Ji Q, Hou G, Han X, Bao X, Wang Y, Deng D. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nature Catalysis, 2021, 4(3): 242–250

    Article  CAS  Google Scholar 

  7. Chang K, Wang T F, Chen J G G. Hydrogenation of CO2 to methanol over CuCeTiOx catalysts. Applied Catalysis B: Environmental, 2017, 206: 704–711

    Article  CAS  Google Scholar 

  8. Luo R C, Chen M, Zhou F R, Zhan J M, Deng Q, Yu Y, Zhang Y F, Xu W, Fang Y X. Synthesis of metalloporphyrin-based porous organic polymers and their functionalization for conversion of CO2 into cyclic carbonates: recent advances, opportunities and challenges. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(46): 25731–25749

    Article  CAS  Google Scholar 

  9. Liang J, Huang Y B, Cao R. Metal-organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide into cyclic carbonates. Coordination Chemistry Reviews, 2019, 378: 32–65

    Article  CAS  Google Scholar 

  10. Lee K M, Jang J H, Balamurugan M, Kim J E, Jo Y I, Nam K T. Redox-neutral electrochemical conversion of CO2 to dimethyl carbonate. Nature Energy, 2021, 6(7): 733–741

    Article  CAS  Google Scholar 

  11. Schilling W, Das S. Transition metal-free synthesis of carbamates using CO2 as the carbon source. ChemSusChem, 2020, 13(23): 6246–6258

    Article  CAS  PubMed  Google Scholar 

  12. Cauwenbergh R, Goyal V, Maiti R, Natte K, Das S. Challenges and recent advancements in the transformation of CO2 into carboxylic acids: straightforward assembly with homogeneous 3d metals. Chemical Society Reviews, 2022, 51(22): 9371–9423

    Article  CAS  PubMed  Google Scholar 

  13. Yeung C S. Photoredox catalysis as a strategy for CO2 incorporation: direct access to carboxylic acids from a renewable feedstock. Angewandte Chemie International Edition, 2019, 58(17): 5492–5502

    Article  CAS  PubMed  Google Scholar 

  14. Cauwenbergh R, Das S. Photochemical reduction of carbon dioxide to formic acid. Green Chemistry, 2021, 23(7): 2553–2574

    Article  CAS  Google Scholar 

  15. Pradhan S, Das S. Recent advances on the carboxylations of C(sp3)-H bonds using CO2 as the carbon source. Synlett, 2023, 34(12): 1327–1342

    Article  CAS  Google Scholar 

  16. Lang X D, He L N. Green catalytic process for cyclic carbonate synthesis from carbon dioxide under mild conditions. Chemical Record (New York, N.Y.), 2016, 16(3): 1337–1352

    CAS  PubMed  Google Scholar 

  17. Schäffner B, Schaffner F, Verevkin S P, Borner A. Organic carbonates as solvents in synthesis and catalysis. Chemical Reviews, 2010, 110(8): 4554–4581

    Article  PubMed  Google Scholar 

  18. Lawrenson S B, Arav R, North M. The greening of peptide synthesis. Green Chemistry, 2017, 19(7): 1685–1691

    Article  CAS  Google Scholar 

  19. Sathish M, Sreeram K J, Raghava Rao J, Unni Nair B. Cyclic carbonate: a recyclable medium for zero discharge tanning. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1032–1040

    Article  CAS  Google Scholar 

  20. Sakakura T, Kohno K. The synthesis of organic carbonates from carbon dioxide. Chemical Communications (Cambridge), 2009, 11(11): 1312–1330

    Article  Google Scholar 

  21. Wei X L, Xu W, Vijayakumar M, Cosimbescu L, Liu T B, Sprenkle V, Wang W. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries. Advanced Materials, 2014, 26(45): 7649–7653

    Article  CAS  PubMed  Google Scholar 

  22. Besse V, Camara F, Voirin C, Auvergne R, Caillol S, Boutevin B. Synthesis and applications of unsaturated cyclocarbonates. Polymer Chemistry, 2013, 4(17): 4545–4561

    Article  CAS  Google Scholar 

  23. Khan A, Yang L, Xu J, Jin L Y, Zhang Y J. Palladium-catalyzed asymmetric decarboxylative cycloaddition of vinylethylene carbonates with michael acceptors: construction of vicinal quaternary stereocenters. Angewandte Chemie International Edition, 2014, 53(42): 11257–11260

    Article  CAS  PubMed  Google Scholar 

  24. Guo W S, Gonzalez-Fabra J, Bandeira N A G, Bo C, Kleij A W. A metal-free synthesis of N-aryl carbamates under ambient conditions. Angewandte Chemie International Edition, 2015, 54(40): 11686–11690

    Article  CAS  PubMed  Google Scholar 

  25. Liang S G, Liu H Z, Jiang T, Song J L, Yang G Y, Han B X. Highly efficient synthesis of cyclic carbonates from CO2 and epoxides over cellulose/KI. Chemical Communications (Cambridge), 2011, 47(7): 2131–2133

    Article  CAS  Google Scholar 

  26. Huang J W, Shi M. Chemical fixation of carbon dioxide by NaI/PPh3/PhOH. Journal of Organic Chemistry, 2003, 68(17): 6705–6709

    Article  CAS  PubMed  Google Scholar 

  27. Barkakaty B, Morino K, Sudo A, Endo T. Amidine-mediated delivery of CO2 from gas phase to reaction system for highly efficient synthesis of cyclic carbonates from epoxides. Green Chemistry, 2010, 12(1): 42–44

    Article  CAS  Google Scholar 

  28. Hong M, Kim Y, Kim H, Cho H J, Baik M H, Kim Y. Scorpionate catalysts for coupling CO2 and epoxides to cyclic carbonates: a rational design approach for organocatalysts. Journal of Organic Chemistry, 2018, 83(16): 9370–9380

    Article  CAS  PubMed  Google Scholar 

  29. Liu F S, Gu Y Q, Zhao P H, Gao J, Liu M S. Cooperative conversion of CO2 to cyclic carbonates in dual-ionic ammonium salts catalytic medium at ambient temperature. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5940–5945

    Article  CAS  Google Scholar 

  30. Ju H Y, Manju M D, Kim K H, Park S W, Park D W. Catalytic performance of quaternary ammonium salts in the reaction of butyl glycidyl ether and carbon dioxide. Journal of Industrial and Engineering Chemistry, 2008, 14(2): 157–160

    Article  CAS  Google Scholar 

  31. Jaiswal P, Varma M N. Catalytic performance of imidazolium based ILs in the reaction of 1,2-epoxyoctane and carbon dioxide: kinetic study. Journal of CO2 Utilization, 2016, 14: 93–97

    Article  CAS  Google Scholar 

  32. Girard A L, Simon N, Zanatta M, Marmitt S, Goncalves P, Dupont J. Insights on recyclable catalytic system composed of task-specific ionic liquids for the chemical fixation of carbon dioxide. Green Chemistry, 2014, 16(5): 2815–2825

    Article  CAS  Google Scholar 

  33. Sun J, Han L J, Cheng W G, Wang J Q, Zhang X P, Zhang S J. Efficient acid-base bifunctional catalysts for the fixation of CO2 with epoxides under metal- and solvent-free conditions. ChemSusChem, 2011, 4(4): 502–507

    Article  CAS  PubMed  Google Scholar 

  34. Zou B, Hu C W. Halogen-free processes for organic carbonate synthesis from CO2. Current Opinion in Green and Sustainable Chemistry, 2017, 3: 11–16

    Article  Google Scholar 

  35. Tong H Y, Qu Y Y, Li Z J, He J, Zou X, Zhou Y, Duan T, Liu B, Sun J, Guo K. Halide-free pyridinium saccharinate binary organocatalyst for the cycloaddition of CO2 into epoxides. Chemical Engineering Journal, 2022, 444: 135478

    Article  CAS  Google Scholar 

  36. Guo L P, Lamb K J, North M. Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates. Green Chemistry, 2021, 23(1): 77–118

    Article  CAS  Google Scholar 

  37. Shen Y M, Duan W L, Shi M. Phenol and organic bases co-catalyzed chemical fixation of carbon dioxide with terminal epoxides to form cyclic carbonates. Advanced Synthesis & Catalysis, 2003, 345(3): 337–340

    Article  CAS  Google Scholar 

  38. Shen Y M, Duan W L, Shi M. Chemical fixation of carbon dioxide catalyzed by binaphthyldiamino Zn, Cu, and Co salen-type complexes. Journal of Organic Chemistry, 2003, 68(4): 1559–1562

    Article  CAS  PubMed  Google Scholar 

  39. Yue S, Qu H L, Song X X, Feng X N. Novel hydroxyl-functionalized ionic liquids as efficient catalysts for the conversion of CO2 into cyclic carbonates under metal/halogen/cocatalyst/solvent-free conditions. New Journal of Chemistry, 2022, 46(12): 5881–5888

    Article  CAS  Google Scholar 

  40. Kim Y, Ryu S, Cho W, Kim M, Park M H, Kim Y. Halide-free and bifunctional one-component catalysts for the coupling of carbon dioxide and epoxides. Inorganic Chemistry, 2019, 58(9): 5922–5931

    Article  CAS  PubMed  Google Scholar 

  41. Sankar M, Ajithkumar T G, Sankar G, Manikandan P. Supported imidazole as heterogeneous catalyst for the synthesis of cyclic carbonates from epoxides and CO2. Catalysis Communications, 2015, 59: 201–205

    Article  CAS  Google Scholar 

  42. Zhou H, Zhang W Z, Liu C H, Qu J P, Lu X B. CO2 adducts of N-heterocyclic carbenes: thermal stability and catalytic activity toward the coupling of CO2 with epoxides. Journal of Organic Chemistry, 2008, 73(20): 8039–8044

    Article  CAS  PubMed  Google Scholar 

  43. Kayaki Y, Yamamoto M, Ikariya T. N-Heterocyclic carbenes as efficient organocatalysts for CO2 fixation reactions. Angewandte Chemie International Edition, 2009, 48(23): 4194–4197

    Article  CAS  PubMed  Google Scholar 

  44. Talapaneni S N, Buyukcakir O, Je S H, Srinivasan S, Seo Y, Polychronopoulou K, Coskun A. Nanoporous polymers incorporating sterically confined N-heterocyclic carbenes for simultaneous CO2 capture and conversion at ambient pressure. Chemistry of Materials, 2015, 27(19): 6818–6826

    Article  CAS  Google Scholar 

  45. Long G C, Wu D S, Pan H Y, Zhao T X, Hu X B. Imidazolium hydrogen carbonate ionic liquids: versatile organocatalysts for chemical conversion of CO2 into valuable chemicals. Journal of CO2 Utilization, 2020, 39: 101155

    Article  CAS  Google Scholar 

  46. Zhou H, Wang G X, Zhang W Z, Lu X B. CO2 adducts of phosphorus ylides: highly active organocatalysts for carbon dioxide transformation. ACS Catalysis, 2015, 5(11): 6773–6779

    Article  CAS  Google Scholar 

  47. Tharun J, Roshan K R, Kathalikkattil A C, Kang D H, Ryu H M, Park D W. Natural amino acids/H2O as a metal- and halide-free catalyst system for the synthesis of propylene carbonate from propylene oxide and CO2 under moderate conditions. RSC Advances, 2014, 4(78): 41266–41270

    Article  CAS  Google Scholar 

  48. Sun J, Cheng W G, Yang Z F, Wang J Q, Xu T T, Xin J Y, Zhang S J. Superbase/cellulose: an environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates. Green Chemistry, 2014, 16(6): 3071–3078

    Article  CAS  Google Scholar 

  49. Wu X, Chen C T, Guo Z Y, North M, Whitwood A C. Metal- and halide-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. ACS Catalysis, 2019, 9(3): 1895–1906

    Article  CAS  Google Scholar 

  50. Roshan K R, Kim B M, Kathalikkattil A C, Tharun J, Won Y S, Park D W. The unprecedented catalytic activity of alkanolamine CO2 scrubbers in the cycloaddition of CO2 and oxiranes: a DFT endorsed study. Chemical Communications (Cambridge), 2014, 50(89): 13664–13667

    Article  CAS  Google Scholar 

  51. Kim H G, Lim C S, Kim D W, Cho D H, Lee D K, Chung J S. Multifunctional alkanolamine as a catalyst for CO2 and propylene oxide cycloaddition. Molecular Catalysis, 2017, 438: 121–129

    Article  CAS  Google Scholar 

  52. Xu J, Gan Y L, Pei J J, Xue B. Metal-free catalytic conversion of CO2 into cyclic carbonate by hydroxyl-functionalized graphitic carbon nitride materials. Molecular Catalysis, 2020, 491: 110979

    Article  CAS  Google Scholar 

  53. Zhu J J, Diao T T, Wang W Y, Xu X L, Sun X Y, Carabineiro S A C, Zhao Z. Boron doped graphitic carbon nitride with acid-base duality for cycloaddition of carbon dioxide to epoxide under solvent-free condition. Applied Catalysis B: Environmental, 2017, 219: 92–100

    Article  CAS  Google Scholar 

  54. Chen A J, Chen C, Xiu Y H, Liu X R, Chen J Z, Guo L, Zhang R, Hou Z S. Niobate salts of organic base catalyzed chemical fixation of carbon dioxide with epoxides to form cyclic carbonates. Green Chemistry, 2015, 17(3): 1842–1852

    Article  CAS  Google Scholar 

  55. Wang Z, Li D, Chen S Q, Hu J Y, Gong Y X, Guo Y F, Deng T L. Ionic liquid [DBUH][BO2]: an excellent catalyst for chemical fixation of CO2 under mild conditions. New Journal of Chemistry, 2021, 45(10): 4611–4616

    Article  CAS  Google Scholar 

  56. Gong Y X, Li Y F, Hu J Y, Wang Z, Deng T L. Sulfur-containing amino acid-derived ionic liquid as a halogen-free catalyst for CO2 mild transformation into cyclic carbonates. New Journal of Chemistry, 2021, 45(41): 19215–19218

    Article  CAS  Google Scholar 

  57. Zhang F, Bulut S, Shen X J, Dong M H, Wang Y Y, Cheng X M, Liu H Z, Han B X. Halogen-free fixation of carbon dioxide into cyclic carbonates via bifunctional organocatalysts. Green Chemistry, 2021, 23(3): 1147–1153

    Article  CAS  Google Scholar 

  58. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743): 2040–2042

    Article  PubMed  Google Scholar 

  59. Macias E E, Ratnasamy P, Carreon M A. Catalytic activity of metal organic framework Cu3(BTC)2 in the cycloaddition of CO2 to epichlorohydrin reaction. Catalysis Today, 2012, 198(1): 215–218

    Article  CAS  Google Scholar 

  60. Yang D A, Cho H Y, Kim J, Yang S T, Ahn W S. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy & Environmental Science, 2012, 5(4): 6465–6473

    Article  CAS  Google Scholar 

  61. Cho H Y, Yang D A, Kim J, Jeong S Y, Ahn W S. CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating. Catalysis Today, 2012, 185(1): 35–40

    Article  CAS  Google Scholar 

  62. Kim J, Kim S N, Jang H G, Seo G, Ahn W S. CO2 cycloaddition of styrene oxide over MOF catalysts. Applied Catalysis A, General, 2013, 453: 175–180

    Article  CAS  Google Scholar 

  63. Han Y H, Zhou Z Y, Tian C B, Du S W. A dual-walled cage MOF as an efficient heterogeneous catalyst for the conversion of CO2 under mild and co-catalyst free conditions. Green Chemistry, 2016, 18(14): 4086–4091

    Article  CAS  Google Scholar 

  64. Miralda C M, Macias E E, Zhu M Q, Ratnasamy P, Carreon M A. Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate. ACS Catalysis, 2012, 2(1): 180–183

    Article  CAS  Google Scholar 

  65. Zhu M Q, Srinivas D, Bhogeswararao S, Ratnasamy P, Carreon M A. Catalytic activity of ZIF-8 in the synthesis of styrene carbonate from CO2 and styrene oxide. Catalysis Communications, 2013, 32: 36–40

    Article  CAS  Google Scholar 

  66. Xiang W L, Sun Z Y, Wu Y R, He L N, Liu C J. Enhanced cycloaddition of CO2 to epichlorohydrin over zeolitic imidazolate frameworks with mixed linkers under solventless and co-catalyst-free condition. Catalysis Today, 2020, 339: 337–343

    Article  CAS  Google Scholar 

  67. Yang L L, Yu L, Diao G Q, Sun M, Cheng G, Chen S Y. Zeolitic imidazolate framework-68 as an efficient heterogeneous catalyst for chemical fixation of carbon dioxide. Journal of Molecular Catalysis A Chemical, 2014, 392: 278–283

    Article  CAS  Google Scholar 

  68. Hwang G Y, Roshan R, Ryu H S, Jeong H M, Ravi S, Kim M I, Park D W. A highly efficient zeolitic imidazolate framework catalyst for the co-catalyst and solvent free synthesis of cyclic carbonates from CO2. Journal of CO2 Utilization, 2016, 15: 123–130

    Article  CAS  Google Scholar 

  69. Mousavi B, Chaemchuen S, Moosavi B, Luo Z X, Gholampour N, Verpoort F. Zeolitic imidazole framework-67 as an efficient heterogeneous catalyst for the conversion of CO2 to cyclic carbonates. New Journal of Chemistry, 2016, 40(6): 5170–5176

    Article  CAS  Google Scholar 

  70. Kuruppathparambil R R, Babu R, Jeong H M, Hwang G Y, Jeong G S, Kim M I, Kim D W, Park D W. A solid solution zeolitic imidazolate framework as a room temperature efficient catalyst for the chemical fixation of CO2. Green Chemistry, 2016, 18(23): 6349–6356

    Article  CAS  Google Scholar 

  71. Bhanage B M, Fujita S, Ikushima Y, Arai M. Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Applied Catalysis A, General, 2001, 219(1–2): 259–266

    Article  CAS  Google Scholar 

  72. Yano T, Matsui H, Koike T, Ishiguro H, Fujihara H, Yoshihara M, Maeshima T. Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry. Chemical Communications (Cambridge), 1997(12): 1129–1130

  73. Aresta M. Nb(V) compounds as epoxides carboxylation catalysts: the role of the solvent. Journal of Molecular Catalysis A Chemical, 2003, 204–205: 245–252

    Article  Google Scholar 

  74. Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides. Journal of the American Chemical Society, 1999, 121(18): 4526–4527

    Article  CAS  Google Scholar 

  75. Dai W L, Yin S F, Guo R, Luo S L, Du X, Au C T. Synthesis of propylene carbonate from carbon dioxide and propylene oxide using Zn-Mg-Al composite oxide as high-efficiency catalyst. Catalysis Letters, 2009, 136(1–2): 35–44

    Google Scholar 

  76. Adeleye A I, Patel D, Niyogi D, Saha B. Efficient and greener synthesis of propylene carbonate from carbon dioxide and propylene oxide. Industrial & Engineering Chemistry Research, 2014, 53(49): 18647–18657

    Article  CAS  Google Scholar 

  77. Gao J, Yue C G, Wang H, Li J X, Yao H, Wang M Y, Ma X B. CeO2-ZrO2 solid solution catalyzed and moderate acidic-basic sites dominated cycloaddition of CO2 with epoxides: halogen-free synthesis of cyclic carbonates. Catalysts, 2022, 12(6): 632

    Article  CAS  Google Scholar 

  78. Tambe P R, Yadav G D. Heterogeneous cycloaddition of styrene oxide with carbon dioxide for synthesis of styrene carbonate using reusable lanthanum-zirconium mixed oxide as catalyst. Clean Technologies and Environmental Policy, 2018, 20(2): 345–356

    Article  CAS  Google Scholar 

  79. Kulal N, Vasista V, Shanbhag G V. Identification and tuning of active sites in selected mixed metal oxide catalysts for cyclic carbonate synthesis from epoxides and CO2. Journal of CO2 Utilization, 2019, 33: 434–444

    Article  CAS  Google Scholar 

  80. Rasal K B, Yadav G D, Koskinen R, Keiski R. Solventless synthesis of cyclic carbonates by direct utilization of CO2 using nanocrystalline lithium promoted magnesia. Molecular Catalysis, 2018, 451: 200–208

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Key R&D Program of China (Grant No. 2022YFB4101900), and National Natural Science Foundation of China (Grant Nos. 22278305 and U21B2096).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei-Yan Wang or Xinbin Ma.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yue, C., Ji, W. et al. Recent advances in cycloaddition of CO2 with epoxides: halogen-free catalysis and mechanistic insights. Front. Chem. Sci. Eng. 17, 1879–1894 (2023). https://doi.org/10.1007/s11705-023-2354-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2354-4

Keywords

Navigation