Skip to main content
Log in

Construction of nitrogen-doped carbon cladding LiMn2O4 film electrode with enhanced stability for electrochemically selective extraction of lithium ions

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Reducing the dissolution of Mn from LiMn2O4 (LMO) and enhancing the stability of film electrodes are critical and challenging for Li+ ions selective extraction via electrochemically switched ion exchange technology. In this work, we prepared a nitrogen-doped carbon cladding LMO (C-N@LMO) by polymerization of polypyrrole and high-temperature annealing in the N2 gas to achieve the above purpose. The modified C-N@LMO film electrode exhibited lower Mn dissolution and better cyclic stability than the LMO film electrode. The dissolution ratio of Mn from the C-N@LMO film electrode decreased by 42% compared to the LMO film electrode after 10 cycles. The cladding layer not only acted as a protective layer but also functioned as a conductive shell, accelerating the migration rate of Li+ ions. The intercalation equilibrium time of the C-N@LMO film electrode reached within an hour during the extraction of Li+ ions, which was 33% less compared to the pure LMO film electrode. Meanwhile, the C-N@LMO film electrode retained evident selectivity toward Li+ ions, and the separation factor was 118.38 for Li+ toward Mg2+ in simulated brine. Therefore, the C-N@LMO film electrode would be a promising candidate for the recovery of Li+ ions from salt lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo G, Li X, Chen L, Chao Y, Zhu W. Electrochemical lithium ion pumps for lithium recovery: a systematic review and influencing factors analysis. Desalination, 2023, 548(15): 116228

    Article  CAS  Google Scholar 

  2. Lukatskaya M R, Dunn B, Gogotsi Y. Multidimensional materials and device architectures for future hybrid energy storage. Nature Communications, 2016, 7(1): 12647

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gao C, Liu H, Bi S, Li H, Ma C. Investigation the improvement of high voltage spinel LiNi0.5Mn1.5O4 cathode material by anneal process for lithium ion batteries. Green Energy & Environment, 2021, 6(1): 114–123

    Article  CAS  Google Scholar 

  4. Zhang Q, Ma B, Wang C, Chen Y, Zhang W. Comprehensive utilization of complex rubidium ore resources: mineral dissociation and selective leaching of rubidium and potassium. International Journal of Minerals Metallurgy and Materials, 2023, 30(5): 857–867

    Article  CAS  Google Scholar 

  5. Shen K, He Q, Ru Q, Tang D, Oo T, Zaw M, Lwin N, Aung S, Tan S, Chen F. Flexible LATP composite membrane for lithium extraction from seawater via an electrochemical route. Journal of Membrane Science, 2023, 671: 121358

    Article  CAS  Google Scholar 

  6. Pramanik B, Nghiem L, Hai F. Extraction of strategically important elements from brines: constraints and opportunities. Water Research, 2022, 168: 115149

    Article  Google Scholar 

  7. Zhang Q, Li S, Sun S, Yin X, Yu J. Lithium selective adsorption on 1-D MnO2 nanostructure ion-sieve. Advanced Powder Technology, 2009, 20(5): 432–437

    Article  Google Scholar 

  8. Jiang H, Yang Y, Yu J. Application of concentration-dependent HSDM to the lithium adsorption from brine in fixed bed columns. Separation and Purification Technology, 2020, 241: 116682

    Article  CAS  Google Scholar 

  9. Zhang Z, Du X, Wang Q, Gao F, Jin T, Hao X, Ma P, Li J, Guan G. A scalable three-dimensional porous λ-MnO2/rGO/Ca-alginate composite electroactive film with potential-responsive ion-pumping effect for selective recovery of lithium ions. Separation and Purification Technology, 2021, 259: 118111

    Article  CAS  Google Scholar 

  10. Wang C, Zhai Y, Wang X, Zeng M. Preparation and characterization of lithium λ-MnO2 ion-sieves. Frontiers of Chemical Science and Engineering, 2014, 8(4): 471–477

    Article  CAS  Google Scholar 

  11. Zhang L, Li L, Shi D, Li J, Peng X, Nie F. Selective extraction of lithium from alkaline brine using HBTA-TOPO synergistic extraction system. Separation and Purification Technology, 2017, 188: 167–173

    Article  CAS  Google Scholar 

  12. Grágeda M, González A, Grágeda M, Ushak S. Purification of brines by chemical precipitation and ion-exchange processes for obtaining battery-grade lithium compounds. International Journal of Energy Research, 2018, 42(7): 2386–2399

    Article  Google Scholar 

  13. Chen W, Li X, Chen L, Zhou G, Lu Q, Huang Y, Chao Y, Zhu W. Tailoring hydrophobic deep eutectic solvent for selective lithium recovery from the mother liquor of Li2CO3. Chemical Engineering Journal, 2021, 420(2): 127648

    Article  CAS  Google Scholar 

  14. Zhao Z, Liu G, Jia H, He L. Sandwiched liquid-membrane electrodialysis: lithium selective recovery from salt lake brines with high Mg/Li ratio. Journal of Membrane Science, 2020, 596: 117685

    Article  CAS  Google Scholar 

  15. Du X, Guan G, Li X, Jagadale A, Ma X, Wang Z, Hao X, Abudula A. A novel electroactive λ-MnO2/PPy/PSS core–shell nanorod coated electrode for selective recovery of lithium ions at low concentration. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(36): 13989–13996

    Article  CAS  Google Scholar 

  16. Ma W, Du X, Liu M, Gao F, Ma X, Li Y, Guan G, Hao X. A conductive chlorine ion-imprinted polymer threaded in metal-organic frameworks for electrochemically selective separation of chloride ions. Chemical Engineering Journal, 2021, 412: 128576

    Article  CAS  Google Scholar 

  17. Wang Q, Du X, Gao F, Liu F, Liu M, Hao X, Tang K, Guan G, Abudula A. A novel H1.6Mn1.6O4/reduced graphene oxide composite film for selective electrochemical capturing lithium ions with low concentration. Separation and Purification Technology, 2019, 226: 59–67

    Article  CAS  Google Scholar 

  18. Zhao M, Ji Z, Zhang Y, Guo Z, Zhao Y, Liu J, Yuan J. Study on lithium extraction from brines based on LiMn2O4/Li1−xMn2O4 by electrochemical method. Electrochimica Acta, 2017, 252: 350–361

    Article  CAS  Google Scholar 

  19. Zhou G, Chen L, Chao Y, Li X, Luo G, Zhu W. Progress in electrochemical lithium ion pumping for lithium recovery. Journal of Energy Chemistry, 2021, 59: 431–445

    Article  CAS  Google Scholar 

  20. Trocoli R, Battistel A, Mantia F. Selectivity of a lithium-recovery process based on LiFePO4. Chemistry—A European Communication, 2014, 20: 9888–9891

    Article  CAS  Google Scholar 

  21. Xu W, He L, Zhao Z. Lithium extraction from high Mg/Li brine via electrochemical intercalation/de-intercalation system using LiMn2O4 materials. Desalination, 2021, 503: 114935

    Article  CAS  Google Scholar 

  22. Jiang Y, Chai L, Zhang D, Ouyang F, Zhou X, Alhassan S, Liu S, He Y, Yan L, Wang H, Zhang W. Facet-controlled LiMn2O4/C as deionization electrode with enhanced stability and high desalination performance. Nano-Micro Letters, 2022, 14(1): 176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Banerjee A, Ziv B, Shilina Y, Luski S, Aurbach D, Halalay I. Acid-scavenging separators: a novel route for improving Li-ion batteries’ durability. ACS Energy Letters, 2017, 2(10): 2388–2393

    Article  CAS  Google Scholar 

  24. Zeng J, Li M, Li X, Chen C, Xiong D, Dong L, Li D, Lushington A, Sun X. A novel coating onto LiMn2O4 cathode with increased lithium ion battery performance. Applied Surface Science, 2014, 317: 884–891

    Article  CAS  Google Scholar 

  25. Zhang S, Fang S, Chen J, Ni L, Deng W, Zou G, Hou H, Ji X. Engineering d-p orbital hybridization for high-stable lithium manganate cathode. Chemical Engineering Journal, 2023, 451(1): 138511

    Article  CAS  Google Scholar 

  26. Luo F, Wei C, Zhang C, Gao H, Niu J, Ma W, Peng Z, Bai Y, Zhang Z. Operando X-ray diffraction analysis of the degradation mechanisms of a spinel LiMn2O4 cathode in different voltage windows. Journal of Energy Chemistry, 2020, 44: 138–146

    Article  Google Scholar 

  27. Wu Y, Cao C, Zhang J, Wang L, Ma X, Xu X. Hierarchical LiMn2O4 hollow cubes with exposed {111} planes as high-power cathodes for lithium-ion batteries. ACS Applied Materials & Interfaces, 2016, 8(30): 19567–19572

    Article  CAS  Google Scholar 

  28. Xiao Y, Zhang X, Zhu Y, Wang P, Yin Y, Yang X, Shi J, Liu J, Li H, Guo X, Zhong B H, Guo Y G. Suppressing manganese dissolution via exposing stable {111} facets for high-performance lithium-ion oxide cathode. Advanced Science, 2019, 6(13): 1801908

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li X, Liu J, Meng X, Tang Y, Banis M, Yang J, Hu Y, Li R, Cai M, Sun X. Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition. Journal of Power Sources, 2014, 247: 57–69

    Article  CAS  Google Scholar 

  30. Thackeray M, Johnson C, Kim J, Lauzze K, Vaughey J, Dietz N, Abraham D, Hackney S, Zeltner W, Anderson M. ZrO2- and Li2ZrO3-stabilized spinel and layered electrodes for lithium batteries. Electrochemistry Communications, 2003, 5(9): 752–758

    Article  CAS  Google Scholar 

  31. Ju B, Wang X, Wu C, Wei Q, Yang X, Shu H, Bai Y. Excellent cycling stability of spherical spinel LiMn2O4 by Y2O3 coating for lithium-ion batteries. Journal of Solid State Electrochemistry, 2013, 18(1): 115–123

    Article  Google Scholar 

  32. Liu H, Cheng C, Hu Z, Zhang K. Improving the elevated temperature performance of Li/LiMn2O4 cells by coating with ZnO. Journal of Materials Science, 2005, 40(21): 5767–5769

    Article  CAS  Google Scholar 

  33. Qiao Y, Zhou Z, Chen Z, Du S, Cheng Q, Zhai H, Fritz N, Du Q, Yang Y. Visualizing ion diffusion in battery systems by fluorescence microscopy: a case study on the dissolution of LiMn2O4. Nano Energy, 2018, 45: 68–74

    Article  CAS  Google Scholar 

  34. Ren Q, Yuan Y, Wang S. Interfacial strategies for suppression of Mn dissolution in rechargeable battery cathode materials. ACS Applied Materials & Interfaces, 2022, 14(20): 23022–23032

    Article  CAS  Google Scholar 

  35. Peng K, Peng T. Carbon covering to improve the storage performance of LiMn2O4 electrode at 60 °C. Ceramics International, 2014, 40(9): 15345–15349

    Article  CAS  Google Scholar 

  36. Tomon C, Sarawutanukul S, Phattharasupakun N, Duangdangchote S, Chomkhuntod P, Joraleechanchai N, Bunyanidhi P, Sawangphruk M. Core–shell structure of LiMn2O4 cathode material reduces phase transition and Mn dissolution in Li-ion batteries. Communications Chemistry, 2022, 5(1): 1–12

    Article  Google Scholar 

  37. Jiang Q, Wang X, Tang Z. Improving the electrochemical performance of LiMn2O4 by amorphous carbon coating. Fullerenes, Nanotubes, and Carbon Nanostructures, 2014, 23(8): 676–679

    Article  Google Scholar 

  38. Ilango P, Prasanna K, Do S, Jo Y, Lee C. Eco-friendly nitrogen-containing carbon encapsulated LiMn2O4 cathodes to enhance the electrochemical properties in rechargeable Li-ion batteries. Scientific Reports, 2016, 6(1): 29826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo W, Li F, Gaumet J, Magri P, Diliberto S, Zhou L, Mai L. Bottom-up confined synthesis of nanorod-in-nanotube structured Sb@N-C for durable lithium and sodium storage. Advanced Energy Materials, 2018, 8(19): 1703237

    Article  Google Scholar 

  40. Fang J, Wang J, Ji Z, Cui J, Guo Z, Liu J, Zhao Y, Yuan J. Establishment of PPy-derived carbon encapsulated LiMn2O4 film electrode and its performance for efficient Li+ elecfrosorption. Separation and Purification Technology, 2022, 280: 119726

    Article  CAS  Google Scholar 

  41. Li S, Zhang J, Yan Y, Yu L, Zhao J. Manganese valence state regulated beta-manganese dioxide porous nanoflowers as high-performance cathodes at large current densities for aqueous magnesium ions battery capacitor. Journal of Energy Storage, 2023, 59: 106456

    Article  Google Scholar 

  42. Kim J, Kim K, Cho W, Shin W, Kanno R, Choi W. A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries. Nano Letters, 2012, 12(12): 6358–6365

    Article  CAS  PubMed  Google Scholar 

  43. Mu C, Lou S, Ali R, Xiong H, Liu S, Wang H, Huo W, Yin L, Jia R, Liu Y, et al. Carbon-decorated LiMn2O4 nanorods with enhanced performance for supercapacitors. Journal of Alloys and Compounds, 2019, 805: 624–630

    Article  CAS  Google Scholar 

  44. Dong W, Huang X, Jin Y, Xie M, Zhao W, Huang F. Building an artificial solid electrolyte interphase on spinel lithium manganate for high performance aqueous lithium-ion batteries. Dalton Transactions, 2020, 49(24): 8136–8142

    Article  CAS  PubMed  Google Scholar 

  45. Selvamani V, Phattharasupakun N, Wutthiprom J, Sawangphruk M. High-performance spinel LiMn2O4@carbon core-shell cathode materials for Li-ion batteries. Sustainable Energy & Fuels, 2019, 3(8): 1988–1994

    Article  CAS  Google Scholar 

  46. Batool A, Kanwal F, Imran M, Jamil T, Siddiqi S A. Synthesis of polypyrrole/zinc oxide composites and study of their structural, thermal and electrical properties. Synthetic Metals, 2012, 161(23): 2753–2758

    Article  Google Scholar 

  47. Lai F, Zhang X, Wu Q, Zhang J, Li Q, Huang Y, Liao Z, Wan H. Effect of surface modification with spinel NiFe2O4 on enhanced cyclic stability of LiMn2O4 cathode material in lithium ion batteries. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 570–578

    Article  CAS  Google Scholar 

  48. Lawagon C, Nisola G, Cuevas R, Kim H, Lee S, Chung W. Li1−xNi0.33Co1/3Mn1/3O2/Ag for electrochemical lithium recovery from brine. Chemical Engineering Journal, 2018, 348: 1000–1011

    Article  CAS  Google Scholar 

  49. Zhang E, Liu W, Liang Q, Liu X, Zhao Z, Yang Y. Selective recovery of Li+ in acidic environment based on one novel electroactive Li+-imprinted graphene-based hybrid aerogel. Chemical Engineering Journal, 2020, 385: 123948

    Article  CAS  Google Scholar 

  50. Kim S, Joo H, Moon T, Kim S, Yoon J. Rapid and selective lithium recovery from desalination brine using an electrochemical system. Environmental Science: Processes & Impacts, 2019, 21(4): 667–676

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. U21A20303, 22078217 and U20A20141).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Du or Xiaogang Hao.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic Supplementary Material

11705_2023_2343_MOESM1_ESM.pdf

Construction of nitrogen-doped carbon cladding LiMn2O4 film electrode with enhanced stability for electrochemically selective extraction of lithium ions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., He, Y., Sun, H. et al. Construction of nitrogen-doped carbon cladding LiMn2O4 film electrode with enhanced stability for electrochemically selective extraction of lithium ions. Front. Chem. Sci. Eng. 17, 2050–2060 (2023). https://doi.org/10.1007/s11705-023-2343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2343-7

Keywords

Navigation