Skip to main content
Log in

“Charging” the cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects for enhanced oxygen evolution performance

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Owing to the complexity of electron transfer pathways, the sluggish oxygen evolution reaction process is defined as the bottleneck for the practical application of Zn-air batteries. In this effort, metal nanoparticles (Co, Ni, Fe, etc.) encapsulated within nitrogen-doped carbon materials with abundant edge sites were synthesized by one-step pyrolysis treatment using cigarette butts as raw materials, which can drastically accelerate the overall rate of oxygen evolution reaction by facilitating the adsorption of oxygenated intermediates by the edge-induced topological defects. The prepared catalyst of nitrogen-doped carbon porous nanosheets loaded with Co nanoparticles (Co@NC-500) exhibits enhanced catalytic activity toward oxygen evolution reaction, with a low overpotential of 350 mV at the current density of 10 mA·cm−2. Furthermore, the Zn-air battery assembled with Co@NC-500 catalyst demonstrates a desirable performance affording an open-circuit potential of 1.336 V and power density of 33.6 mW·cm−2, indicating considerable practical application potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lu C, Tian M, Zheng X, Wei C, Rummeli M H, Strasser P, Yang R. Cotton pad derived 3D lithiophilic carbon host for robust Li metal anode: in-situ generated ionic conductive Li3N protective decoration. Chemical Engineering Journal, 2022, 430: 132722

    Article  CAS  Google Scholar 

  2. Cai G, Zhang W, Jiao L, Yu S H, Jiang H L. Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem, 2017, 2(6): 791–802

    Article  CAS  Google Scholar 

  3. Zhang J W, Zhang H, Ren T Z, Yuan Z Y, Bandosz T J. Fe-Ni doped porous carbon as an efficient catalyst for oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2021, 15(2): 279–287

    Article  Google Scholar 

  4. Wang Y, Su H, He Y, Li L, Zhu S, Shen H, Xie P, Fu X, Zhou G, Feng C, Zhao D, Xiao F, Zhu X, Zeng Y, Shao M, Chen S, Wu G, Zeng J, Wang C. Advanced electrocatalysts with single-metal-atom active sites. Chemical Reviews, 2020, 120(21): 12217–12314

    Article  CAS  PubMed  Google Scholar 

  5. Yu J, Li B Q, Zhao C X, Liu J N, Zhang Q. Asymmetric air cathode design for enhanced interfacial electrocatalytic reactions in high-performance zinc-air batteries. Advanced Materials, 2020, 32(12): e1908488

    Article  PubMed  Google Scholar 

  6. Han S, Hu X, Wang J, Fang X, Zhu Y. Novel route to Fe-based cathode as an efficient bifunctional catalysts for rechargeable Zn-air battery. Advanced Energy Materials, 2018, 8(22): 1800955

    Article  Google Scholar 

  7. Weng C C, Ren J T, Wang H Y, Lv X W, Song Y J, Wang Y S, Chen L, Tian W W, Yuan Z Y. Triple-phase oxygen electrocatalysis of hollow spherical structures for rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2022, 307: 121190

    Article  CAS  Google Scholar 

  8. Zeng W, Wei C, Zeng K, Cao X, Rümmeli M H, Yang R. NiFeMo nanoparticles encapsulated within nitrogen-doped reduced graphene oxide as bifunctional electrocatalysts for zinc-air batteries. ChemElectroChem, 2020, 8(3): 524–531

    Article  Google Scholar 

  9. Yan L, Xu Z, Hu W, Ning J, Zhong Y, Hu Y. Formation of sandwiched leaf-like CNTs-Co/ZnCo2O4@NC-CNTs nanohybrids for high-power-density rechargeable Zn-air batteries. Nano Energy, 2021, 82: 105710

    Article  CAS  Google Scholar 

  10. Tian W W, Ren J T, Lv X W, Yuan Z Y A. “gas-breathing” integrated air diffusion electrode design with improved oxygen utilization efficiency for high-performance Zn-air batteries. Chemical Engineering Journal, 2022, 431: 133210

    Article  CAS  Google Scholar 

  11. Li L, Yang H, Miao J, Zhang L, Wang H Y, Zeng Z, Huang W, Dong X, Liu B. Unraveling oxygen evolution reaction on carbon-based electrocatalysts: effect of oxygen doping on adsorption of oxygenated intermediates. ACS Energy Letters, 2017, 2(2): 294–300

    Article  CAS  Google Scholar 

  12. Zhang R Q, Ma A, Liang X, Zhao L M, Zhao H, Yuan Z Y. Cobalt nanoparticle decorated N-doped carbons derived from a cobalt covalent organic framework for oxygen electrochemistry. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1550–1560

    Article  CAS  Google Scholar 

  13. Min K, Hwang M, Shim S E, Lim D, Baeck S H. Defect-rich Fe-doped Co3O4 derived from bimetallic-organic framework as an enhanced electrocatalyst for oxygen evolution reaction. Chemical Engineering Journal, 2021, 424: 130400

    Article  CAS  Google Scholar 

  14. Xu Y, Li X, Wang J, Yu Q, Qian X, Chen L, Dan Y. Fe-doped CoP flower-like microstructure on carbon membrane as integrated electrode with enhanced sodium ion storage. Chemistry, 2020, 26(6): 1298–1305

    Article  CAS  PubMed  Google Scholar 

  15. Ren J T, Yuan G G, Weng C C, Chen L, Yuan Z Y. Uniquely integrated Fe-doped Ni(OH)2 nanosheets for highly efficient oxygen and hydrogen evolution reactions. Nanoscale, 2018, 10(22): 10620–10628

    Article  CAS  PubMed  Google Scholar 

  16. Lan X, Ali B, Wang Y, Wang T. Hollow and yolk-shell Co-N-C@SiO2 nanoreactors: controllable synthesis with high selectivity and activity for nitroarene hydrogenation. ACS Applied Materials & Interfaces, 2020, 12(3): 3624–3630

    Article  CAS  Google Scholar 

  17. Lv X W, Liu Y, Hao R, Tian W, Yuan Z Y. Urchin-like Al-doped Co3O4 nanospheres rich in surface oxygen vacancies enable efficient ammonia electrosynthesis. ACS Applied Materials & Interfaces, 2020, 12(15): 17502–17508

    Article  CAS  Google Scholar 

  18. Kong Q H, Lv X W, Weng C C, Ren J T, Tian W W, Yuan Z Y. Curving engineering of hollow concave-shaped rhombic dodecahedrons of N-doped carbon encapsulated with Fe-doped Co/Co3O4 nanoparticles for an efficient oxygen reduction reaction and Zn-air batteries. ACS Sustainable Chemistry & Engineering, 2022, 10(34): 11441–11450

    Article  CAS  Google Scholar 

  19. Zhang W, Xu C H, Zheng H, Li R, Zhou K. Oxygen-rich cobalt-nitrogen-carbon porous nanosheets for bifunctional oxygen electrocatalysis. Advanced Functional Materials, 2022, 32(23): 2200763

    Article  CAS  Google Scholar 

  20. Tang C, Wang H F, Chen X, Li B Q, Hou T Z, Zhang B, Zhang Q, Titirici M M, Wei F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Advanced Materials, 2016, 28(32): 6845–6851

    Article  CAS  PubMed  Google Scholar 

  21. Hao Y R, Xue H, Lv L, Sun J, Guo N, Song T, Dong H, Zhang J, Wang Q. Unraveling the synergistic effect of defects and interfacial electronic structure modulation of pealike CoFe@Fe3N to achieve superior oxygen reduction performance. Applied Catalysis B: Environmental, 2021, 295: 120314

    Article  CAS  Google Scholar 

  22. Su C, Acik M, Takai K, Lu J, Hao S J, Zheng Y, Wu P, Bao Q, Enoki T, Chabal Y J, Ping Loh K. Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nature Communications, 2012, 3(1): 1298

    Article  PubMed  Google Scholar 

  23. Pang H, Sun P, Gong H, Zhang N, Cao J, Zhang R, Luo M, Li Y, Sun G, Li Y, Deng J, Gao M, Wang M, Kong B. Wood-derived bimetallic and heteroatomic hierarchically porous carbon aerogel for rechargeable flow Zn-air batteries. ACS Applied Materials & Interfaces, 2021, 13(33): 39458–39469

    Article  CAS  Google Scholar 

  24. Zheng X, Cao X, Zeng K, Yan J, Sun Z, Rummeli M H, Yang R. A self-jet vapor-phase growth of 3D FeNi@NCNT clusters as efficient oxygen electrocatalysts for zinc-air batteries. Small, 2021, 17(4): e2006183

    Article  PubMed  Google Scholar 

  25. Ren T Z, Cui M J, Zhao Y M, Mo W L, Wang Z. The activated carbon with pyrolle-N from cotton stalk for the electrochemical performance. Advanced Materials Science and Technology, 2022, 4(2): 0410212

    Article  Google Scholar 

  26. Xu S S, Qiu S W, Yuan Z Y, Ren T Z, Bandosz T J. Nitrogen-containing activated carbon of improved electrochemical performance derived from cotton stalks using indirect chemical activation. Journal of Colloid and Interface Science, 2019, 540: 285–294

    Article  CAS  PubMed  Google Scholar 

  27. Guo X, Yang N, Zhu Z, Zhang Y, Chen J, Qi J, Li X. Iron-cobalt phosphide nanoarrays grown on waste wool-derived carbon: an efficient electrocatalyst for degradation of tetracycline. Journal of Environmental Chemical Engineering, 2022, 10(6): 108788

    Article  CAS  Google Scholar 

  28. Hu Z P, Zhang L F, Wang Z, Yuan Z Y. Bean dregs-derived hierarchical porous carbons as metal-free catalysts for efficient dehydrogenation of propane to propylene. Journal of Chemical Technology and Biotechnology, 2018, 93(12): 3410–3417

    Article  CAS  Google Scholar 

  29. Li L, Jia C, Zhu X, Zhang S. Utilization of cigarette butt waste as functional carbon precursor for supercapacitors and adsorbents. Journal of Cleaner Production, 2020, 256: 120326

    Article  CAS  Google Scholar 

  30. Hu Z P, Zhao H, Chen C, Yuan Z Y. Castanea mollissima shell-derived porous carbons as metal-free catalysts for highly efficient dehydrogenation of propane to propylene. Catalysis Today, 2018, 316: 214–222

    Article  CAS  Google Scholar 

  31. Zhang Y K, Gao L, Hong Y, Shen W J, Wang Y, Zhu J H. Sustainable sorbent derived from discarded cigarette butts for elimination of tobacco specific nitrosamines carcinogen. Environmental Technology & Innovation, 2021, 24: 101825

    Article  CAS  Google Scholar 

  32. Zhou Z, Liu X, Li C, Yang Y, Xu J, Xu M. Flaming combustion and smoldering of active impregnated cigarette butts: a novel method for synthesis of nanostructured MnOx catalysts for NOx reduction. Fuel, 2020, 277: 118230

    Article  CAS  Google Scholar 

  33. Meng Q, Chen W, Wu L, Lei J, Liu X, Zhu W, Duan T. A strategy of making waste profitable: nitrogen doped cigarette butt derived carbon for high performance supercapacitors. Energy, 2019, 189: 116241

    Article  CAS  Google Scholar 

  34. Xiong Q, Bai Q, Li C, Li D, Miao X, Shen Y, Uyama H. Nitrogen-doped hierarchical porous carbons from used cigarette filters for supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95: 315–323

    Article  CAS  Google Scholar 

  35. Thue P S, Lima E C, Sieliechi J M, Saucier C, Dias S L P, Vaghetti J C P, Rodembusch F S, Pavan F A. Effects of first-row transition metals and impregnation ratios on the physicochemical properties of microwave-assisted activated carbons from wood biomass. Journal of Colloid and Interface Science, 2017, 486: 163–175

    Article  CAS  PubMed  Google Scholar 

  36. Zheng X, Cao X, Zeng K, Sun Z, Yan J, Li X, Jin C, Chen X, Yang R. Cotton pad-derived large-area 3D N-doped graphene-like full carbon cathode with an O-rich functional group for flexible all solid Zn-air batteries. Journal of Materials Chemistry A, 2020, 8(22): 11202–11209

    Article  CAS  Google Scholar 

  37. Ren J T, Yuan Z Y. A universal route to N-coordinated metals anchored on porous carbon nanosheets for highly efficient oxygen electrochemistry. Journal of Materials Chemistry A, 2019, 7(22): 13591–13601

    Article  CAS  Google Scholar 

  38. Lv X W, Hu Z P, Chen L, Ren J T, Liu Y P, Yuan Z Y. Organic-inorganic metal phosphonate-derived nitrogen-doped core-shell Ni2P nanoparticles supported on Ni foam for efficient hydrogen evolution reaction at all pH values. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12770–12778

    Article  CAS  Google Scholar 

  39. Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science, 2016, 351(6271): 361–365

    Article  CAS  PubMed  Google Scholar 

  40. Zou X, Huang X, Goswami A, Silva R, Sathe B R, Mikmekova E, Asefa T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angewandte Chemie, 2014, 53(17): 4461–4465

    Article  Google Scholar 

  41. Ding W, Wei Z, Chen S, Qi X, Yang T, Hu J, Wang D, Wan L J, Alvi S F, Li L. Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angewandte Chemie, 2013, 52(45): 11971–11975

    Article  Google Scholar 

  42. Yu P, Wang L, Sun F, Xie Y, Liu X, Ma J, Wang X, Tian C, Li J, Fu H. Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Advanced Materials, 2019, 31(30): e1901666

    Article  PubMed  Google Scholar 

  43. Zhong M, He W W, Shuang W, Liu Y Y, Hu T L, Bu X H. Metal-organic framework derived core-shell Co/Co3O4@N-C nanocomposites as high performance anode materials for lithium ion batteries. Inorganic Chemistry, 2018, 57(8): 4620–4628

    Article  CAS  PubMed  Google Scholar 

  44. Lu Z, Wang J, Huang S, Hou Y, Li Y, Zhao Y, Mu S, Zhang J, Zhao Y N. B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts. Nano Energy, 2017, 42: 334–340

    Article  CAS  Google Scholar 

  45. Yang L, Zeng X, Wang D, Cao D. Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Materials, 2018, 12: 277–283

    Article  Google Scholar 

  46. Tao L, Wang Q, Dou S, Ma Z, Huo J, Wang S, Dai L. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chemical Communications, 2016, 52(13): 2764–2767

    Article  CAS  PubMed  Google Scholar 

  47. Tang C, Zhang Q. Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Advanced Materials, 2017, 29(13): 1604103

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22179065, 22111530112), and the S&T project from Shanghai Tobacco Group Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Xu or Zhong-Yong Yuan.

Ethics declarations

Conflicts of interest There are no conflicts to declare.

Electronic Supplementary Material

11705_2023_2318_MOESM1_ESM.pdf

“Charging” the cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects for enhanced oxygen evolution performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, QH., Lv, XW., Ren, JT. et al. “Charging” the cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects for enhanced oxygen evolution performance. Front. Chem. Sci. Eng. 17, 1755–1764 (2023). https://doi.org/10.1007/s11705-023-2318-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2318-8

Keywords

Navigation