Skip to main content
Log in

Latest advances in ionic liquids promoted synthesis and application of advanced biomass materials

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The utilization of sustainable resources provides a path to relieving the problem of dependence on fossil resources. In this context, biomass materials have become a feasible substitute for petroleum-based materials. The development of biomass materials is booming and advanced biomass materials with various functional properties are used in many fields including medicine, electrochemistry, and environmental science. In recent years, ionic liquids have been widely used in biomass pretreatments and processing owing to their “green” characteristics and adjustable physicochemical properties. Thus, the effects of ionic liquids in biomass materials generation require further study. This review summarizes the multiple roles of ionic liquids in promoting the synthesis and application of advanced biomass materials as solvents, structural components, and modifiers. Finally, a prospective approach is proposed for producing additional higher-quality possibilities between ionic liquids and advanced biomass materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Chen Y, Zhang L, Yang Y, Pang B, Xu W, Duan G, Jiang S, Zhang K. Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Advanced Materials, 2021, 33(11): 2005569

    Article  CAS  Google Scholar 

  2. Ji X, Shao H, Li X, Ullah M W, Luo G, Xu Z, Ma L, He X, Lei Z, Li Q, Jiang X, Yang G, Zhang Y. Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration. Biomaterials, 2022, 285: 121530

    Article  CAS  PubMed  Google Scholar 

  3. Cai P, Momen R, Tian Y, Yang L, Zou K, Massoudi A, Deng W, Hou H, Zou G, Ji X. Advanced pre-diagnosis method of biomass intermediates toward high energy dual-carbon potassium-ion capacitor. Advanced Energy Materials, 2022, 12(5): 2103221

    Article  CAS  Google Scholar 

  4. Yu Z, Wang Y, Zheng J, Xiang Y, Zhao P, Cui J, Zhou H, Li D. Rapidly fabricated triboelectric nanogenerator employing insoluble and infusible biomass materials by fused deposition modeling. Nano Energy, 2020, 68: 104382

    Article  CAS  Google Scholar 

  5. Sun H, Yang B, Li A. Biomass derived porous carbon for efficient capture of carbon dioxide, organic contaminants and volatile iodine with exceptionally high uptake. Chemical Engineering Journal, 2019, 372: 65–73

    Article  CAS  Google Scholar 

  6. Zhang J, Zhang X, Yang M, Singh S, Cheng G. Transforming lignocellulosic biomass into biofuels enabled by ionic liquid pretreatment. Bioresource Technology, 2021, 322: 124522

    Article  CAS  PubMed  Google Scholar 

  7. Pang S. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnology Advances, 2019, 37(4): 589–597

    Article  CAS  PubMed  Google Scholar 

  8. Patri A S, Mostofian B, Pu Y, Ciaffone N, Soliman M, Smith M D, Kumar R, Cheng X, Wyman C E, Tetard L, Ragauskas A J, Smith J C, Petridis L, Cai C M. A multifunctional cosolvent pair reveals molecular principles of biomass deconstruction. Journal of the American Chemical Society, 2019, 141(32): 12545–12557

    Article  CAS  PubMed  Google Scholar 

  9. Ventura S P M, Silva F A, Quental M V, Mondal D, Freire M G, Coutinho J A P. Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends. Chemical Reviews, 2017, 117(10): 6984–7052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo J, Tucker Z D, Wang Y, Ashfeld B L, Luo T. Ionic liquid enables highly efficient low temperature desalination by directional solvent extraction. Nature Communications, 2021, 12(1): 437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gu L, Ran C, Chao L, Bao Y, Hui W, Wang Y, Chen Y, Gao X, Song L. Designing ionic liquids as the solvent for efficient and stable perovskite solar cells. ACS Applied Materials & Interfaces, 2022, 14(20): 22870–22878

    Article  CAS  Google Scholar 

  12. Deferm C, van de Voorde M, Luyten J, Oosterhof H, Fransaer J, Binnemans K. Purification of indium by solvent extraction with undiluted ionic liquids. Green Chemistry, 2016, 18(14): 4116–4127

    Article  CAS  Google Scholar 

  13. Cai C, Hanada T, Fajar A T N, Goto M. An ionic liquid extractant dissolved in an ionic liquid diluent for selective extraction of Li(I) from salt lakes. Desalination, 2021, 509: 115073

    Article  CAS  Google Scholar 

  14. Portela-Grandío A, Peleteiro S, Yáñez R, Romaní A. Integral valorization of acacia dealbata wood in organic medium catalyzed by an acidic ionic liquid. Bioresource Technology, 2021, 342: 126013

    Article  PubMed  Google Scholar 

  15. Xu J, Dai L, Zhang C, Gui Y, Yuan L, Lei Y, Fan B. Ionic liquid-aided hydrothermal treatment of lignocellulose for the synergistic outputs of carbon dots and enhanced enzymatic hydrolysis. Bioresource Technology, 2020, 305: 123043

    Article  CAS  PubMed  Google Scholar 

  16. Hou Q, Zhen M, Li W, Liu L, Liu J, Zhang S, Nie Y, Bai C, Bai X, Ju M. Efficient catalytic conversion of glucose into 5-hydroxymethylfurfural by aluminum oxide in ionic liquid. Applied Catalysis B: Environmental, 2019, 253: 1–10

    Article  CAS  Google Scholar 

  17. Zhang B, Xue Y, Jiang A, Xue Z, Li Z, Hao J. Ionic liquid as reaction medium for synthesis of hierarchically structured one-dimensional MoO2 for efficient hydrogen evolution. ACS Applied Materials & Interfaces, 2017, 9(8): 7217–7223

    Article  CAS  Google Scholar 

  18. Andreev I A, Ratmanova N K, Augustin A U, Ivanova O A, Levina I I, Khrustalev V N, Werz D B, Trushkov I V. Protic ionic liquid as reagent, catalyst, and solvent: 1-methylimidazolium thiocyanate. Angewandte Chemie International Edition, 2021, 60(14): 7927–7934

    Article  CAS  PubMed  Google Scholar 

  19. Vaidya A, Mitragotri S. Ionic liquid-mediated delivery of insulin to buccal mucosa. Journal of Controlled Release, 2020, 327: 26–34

    Article  CAS  PubMed  Google Scholar 

  20. Veríssimo N V, Saponi C F, Ryan T M, Greaves T L, Pereira J F B. Imidazolium-based ionic liquids as additives to preserve the enhanced green fluorescent protein fluorescent activity. Green Chemical Engineering, 2021, 2(4): 412–422

    Article  Google Scholar 

  21. Guan X, Yu Y, Wu K, Hou Z, Ma Z, Miao X, Fei T, Zhang T. High sensitive humidity sensors based on biomass ionogels. IEEE Sensors Journal, 2022, 22(13): 12570–12575

    Article  CAS  Google Scholar 

  22. Zhang Y, Yuan B, Zhang Y, Cao Q, Yang C, Li Y, Zhou J. Biomimetic lignin/poly(ionic liquids) composite hydrogel dressing with excellent mechanical strength, self-healing properties, and reusability. Chemical Engineering Journal, 2020, 400: 125984

    Article  CAS  Google Scholar 

  23. Cui J, Li Y, Chen D, Zhan T G, Zhang K D. Ionic liquid-based stimuli-responsive functional materials. Advanced Functional Materials, 2020, 30(50): 2005522

    Article  CAS  Google Scholar 

  24. Chen Y, Mu T. Application of deep eutectic solvents in biomass pretreatment and conversion. Green Energy & Environment, 2019, 4(2): 95–115

    Article  Google Scholar 

  25. Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J. Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends. Materials Chemistry Frontiers, 2017, 1(7): 1273–1290

    Article  CAS  Google Scholar 

  26. Sequeira R A, Mondal D, Prasad K. Neoteric solvent-based blue biorefinery: for chemicals, functional materials and fuels from oceanic biomass. Green Chemistry, 2021, 23(22): 8821–8847

    Article  CAS  Google Scholar 

  27. Beil S, Markiewicz M, Pereira C S, Stepnowski P, Thöming J, Stolte S. Toward the proactive design of sustainable chemicals: ionic liquids as a prime example. Chemical Reviews, 2021, 121(21): 13132–13173

    Article  CAS  PubMed  Google Scholar 

  28. Luo Z, Li W, Yan J, Sun J. Roles of ionic liquids in adjusting nature of ionogels: a mini review. Advanced Functional Materials, 2022, 32(32): 2203988

    Article  CAS  Google Scholar 

  29. Khoo K S, Tan X, Ooi C W, Chew K W, Leong W H, Chai Y H, Ho S H, Show P L. How does ionic liquid play a role in sustainability of biomass processing? Journal of Cleaner Production, 2021, 284: 124772

    Article  CAS  Google Scholar 

  30. Bar-On Y M, Phillips R, Milo R. The biomass distribution on earth. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(25): 6506–6511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schutyser W, Renders T, van den Bossche G, van den Bosch S, Koelewijn S F, Ennaert T, Sels B F. Catalysis in lignocellulosic biorefineries: the case of lignin conversion. In: Nanotechnology in Catalysis. Kluwer Academic Publishers Group, Hague, 2017: 537–584

    Chapter  Google Scholar 

  32. Usmani Z, Sharma M, Gupta P, Karpichev Y, Gathergood N, Bhat R, Gupta V K. Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresource Technology, 2020, 304: 123003

    Article  CAS  PubMed  Google Scholar 

  33. Upton B M, Kasko A M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chemical Reviews, 2016, 116(4): 2275–2306

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Z, Song J, Han B. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chemical Reviews, 2017, 117(10): 6834–6880

    Article  CAS  PubMed  Google Scholar 

  35. Halder P, Kundu S, Patel S, Setiawan A, Atkin R, Parthasarthy R, Paz-Ferreiro J, Surapaneni A, Shah K. Progress on the pretreatment of lignocellulosic biomass employing ionic liquids. Renewable & Sustainable Energy Reviews, 2019, 105: 268–292

    Article  CAS  Google Scholar 

  36. Hou Q, Ju M, Li W, Liu L, Chen Y, Yang Q. Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules, 2017, 22(3): 490

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shen X, Xie Y, Wang Q, Yi X, Shamshina J L, Rogers R D. Enhanced heavy metal adsorption ability of lignocellulosic hydrogel adsorbents by the structural support effect of lignin. Cellulose, 2019, 26(6): 4005–4019

    Article  CAS  Google Scholar 

  38. Driemeier C, Oliveira M M, Curvelo A A S. Lignin contributions to the nanoscale porosity of raw and treated lignocelluloses as observed by calorimetric thermoporometry. Industrial Crops and Products, 2016, 82: 114–117

    Article  CAS  Google Scholar 

  39. Gao X, Chen X, Zhang J, Guo W, Jin F, Yan N. Transformation of chitin and waste shrimp shells into acetic acid and pyrrole. ACS Sustainable Chemistry & Engineering, 2016, 4(7): 3912–3920

    Article  CAS  Google Scholar 

  40. Sun X, Wang Y, Guo Z, Xiao B, Sun Z, Yin H, Meng H, Sui X, Zhao Q, Guo Q, Wang A, Xu W, Liu S, Li Y, Lu S, Peng J. Acellular cauda equina allograft as main material combined with biodegradable chitin conduit for regeneration of long-distance sciatic nerve defect in rats. Advanced Healthcare Materials, 2018, 7(17): 1800276

    Article  Google Scholar 

  41. Chen C, Wu Q, Wan Z, Yang Q, Xu Z, Li D, Jin Y, Rojas O J. Mildly processed chitin used in one-component drinking straws and single use materials: strength, biodegradability and recyclability. Chemical Engineering Journal, 2022, 442: 136173

    Article  CAS  Google Scholar 

  42. Arslan G, Sargin I, Kaya M. Hexavalent chromium removal by magnetic particle-loaded micro-sized chitinous egg shells isolated from ephippia of water flea. International Journal of Biological Macromolecules, 2019, 129: 23–30

    Article  CAS  PubMed  Google Scholar 

  43. Shamshina J L, Barber P S, Gurau G, Griggs C S, Rogers R D. Pulping of crustacean waste using ionic liquids: to extract or not to extract. ACS Sustainable Chemistry & Engineering, 2016, 4(11): 6072–6081

    Article  CAS  Google Scholar 

  44. Castro R, Guerrero-Legarreta I, Bórquez R. Chitin extraction from allopetrolisthes punctatus crab using lactic fermentation. Biotechnology Reports, 2018, 20: e00287

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tolesa L D, Gupta B S, Lee M J. Chitin and chitosan production from shrimp shells using ammonium-based ionic liquids. International Journal of Biological Macromolecules, 2019, 130: 818–826

    Article  CAS  PubMed  Google Scholar 

  46. Uto T, Idenoue S, Yamamoto K, Kadokawa J. Understanding dissolution process of chitin crystal in ionic liquids: theoretical study. Physical Chemistry Chemical Physics, 2018, 20(31): 20669–20677

    Article  CAS  PubMed  Google Scholar 

  47. Qin Y, Lu X, Sun N, Rogers R D. Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chemistry, 2010, 12(6): 968–971

    Article  CAS  Google Scholar 

  48. Ahmad S I, Ahmad R, Khan M S, Kant R, Shahid S, Gautam L, Hasan G, Hassan M I. Chitin and its derivatives: structural properties and biomedical applications. International Journal of Biological Macromolecules, 2020, 164: 526–539

    Article  CAS  PubMed  Google Scholar 

  49. Hunt C F, Lin W H, Voulvoulis N. Evaluating alternatives to plastic microbeads in cosmetics. Nature Sustainability, 2021, 4(4): 366–372

    Article  Google Scholar 

  50. Lam C S, Ramanathan S, Carbery M, Gray K, Vanka K S, Maurin C, Bush R, Palanisami T. A comprehensive analysis of plastics and microplastic legislation worldwide. Water, Air, and Soil Pollution, 2018, 229(11): 345

    Article  Google Scholar 

  51. King C A, Shamshina J L, Zavgorodnya O, Cutfield T, Block L E, Rogers R D. Porous chitin microbeads for more sustainable cosmetics. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11660–11667

    Article  CAS  Google Scholar 

  52. Duan Y, Freyburger A, Kunz W, Zollfrank C. Cellulose and chitin composite materials from an ionic liquid and a green co-solvent. Carbohydrate Polymers, 2018, 192: 159–165

    Article  CAS  PubMed  Google Scholar 

  53. Jedvert K, Heinze T. Cellulose modification and shaping—a review. Journal of Polymer Engineering, 2017, 37(9): 845–860

    Article  CAS  Google Scholar 

  54. Mohd N, Draman S F S, Salleh M S N, Yusof N B. Dissolution of cellulose in ionic liquid: a review. AIP Conference Proceedings, 2017, 1809(1): 020035

    Article  Google Scholar 

  55. Swatloski R P, Spear S K, Holbrey J D, Rogers R D. Dissolution of cellose with ionic liquids. Journal of the American Chemical Society, 2002, 124(18): 4974–4975

    Article  CAS  PubMed  Google Scholar 

  56. Zhao Y, Liu X, Wang J, Zhang S. Effects of cationic structure on cellulose dissolution in ionic liquids: a molecular dynamics study. ChemPhysChem, 2012, 13(13): 3126–3133

    Article  CAS  PubMed  Google Scholar 

  57. Yang X, Qiao C, Li Y, Li T. Dissolution and resourcfulization of biopolymers in ionic liquids. Reactive & Functional Polymers, 2016, 100: 181–190

    Article  CAS  Google Scholar 

  58. Sjahro N, Yunus R, Abdullah L C, Rashid S A, Asis A J, Akhlisah Z N. Recent advances in the application of cellulose derivatives for removal of contaminants from aquatic environments. Cellulose, 2021, 28(12): 7521–7557

    Article  CAS  Google Scholar 

  59. Jeong Y, Moon K, Jeong S, Koh W G, Lee K. Converting waste papers to fluorescent carbon dots in the recycling process without loss of ionic liquids and bioimaging applications. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4510–4515

    Article  CAS  Google Scholar 

  60. Souza D, Mesquita J P, Lago R M, Caminhas L D, Pereira F V. Cellulose nanocrystals: a versatile precursor for the preparation of different carbon structures and luminescent carbon dots. Industrial Crops and Products, 2016, 93: 121–128

    Article  CAS  Google Scholar 

  61. Wang Y, Sun J, He B, Feng M. Synthesis and modification of biomass derived carbon dots in ionic liquids and their application: a mini review. Green Chemical Engineering, 2020, 1(2): 94–108

    Article  Google Scholar 

  62. Bakshi P S, Selvakumar D, Kadirvelu K, Kumar N S. Chitosan as an environment friendly biomaterial—a review on recent modifications and applications. International Journal of Biological Macromolecules, 2020, 150: 1072–1083

    Article  CAS  PubMed  Google Scholar 

  63. Kou S, Peters L M, Mucalo M R. Chitosan: a review of sources and preparation methods. International Journal of Biological Macromolecules, 2021, 169: 85–94

    Article  CAS  PubMed  Google Scholar 

  64. Li B, Wang J, Gui Q, Yang H. Drug-loaded chitosan film prepared via facile solution casting and air-drying of plain water-based chitosan solution for ocular drug delivery. Bioactive Materials, 2020, 5(3): 577–583

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kumar P, Faujdar E, Singh R K, Paul S, Kukrety A, Chhibber V K, Ray S S. High CO2 absorption of o-carboxymethylchitosan synthesised from chitosan. Environmental Chemistry Letters, 2018, 16(3): 1025–1031

    Article  CAS  Google Scholar 

  66. Xie H, Zhang S, Li S. Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chemistry, 2006, 8(7): 630–633

    Article  CAS  Google Scholar 

  67. Wang S, Zhao W, Lee T S, Singer S W, Simmons B A, Singh S, Yuan Q, Cheng G. Dimethyl sulfoxide assisted ionic liquid pretreatment of switchgrass for isoprenol production. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4354–4361

    Article  Google Scholar 

  68. Gale E, Wirawan R H, Silveira R L, Pereira C S, Johns M A, Skaf M S, Scott J L. Directed discovery of greener cosolvents: new cosolvents for use in ionic liquid based organic electrolyte solutions for cellulose dissolution. ACS Sustainable Chemistry & Engineering, 2016, 4(11): 6200–6207

    Article  CAS  Google Scholar 

  69. Alammar A, Hardian R, Szekely G. Upcycling agricultural waste into membranes: from date seed biomass to oil and solvent-resistant nanofiltration. Green Chemistry, 2022, 24(1): 365–374

    Article  CAS  Google Scholar 

  70. Yousuf R G, Winterburn J B. Date seed characterisation, substrate extraction and process modelling for the production of polyhydroxybutyrate by cupriavidus necator. Bioresource Technology, 2016, 222: 242–251

    Article  CAS  PubMed  Google Scholar 

  71. Hardian R, Alammar A, Holtzl T, Szekely G. Fabrication of sustainable organic solvent nanofiltration membranes using cellulose–chitosan biopolymer blends. Journal of Membrane Science, 2022, 658: 120743

    Article  CAS  Google Scholar 

  72. Shamsuri A A, Abdan K, Jamil S N A M. Properties and applications of cellulose regenerated from cellulose/imidazolium-based ionic liquid/co-solvent solutions: a short review. E-Polymers, 2021, 21(1): 869–880

    Article  CAS  Google Scholar 

  73. Hu D, Liu H, Ding Y, Ma W. Synergetic integration of thermal conductivity and flame resistance in nacre-like nanocellulose composites. Carbohydrate Polymers, 2021, 264: 118058

    Article  CAS  PubMed  Google Scholar 

  74. Gan P G, Sam S T, Abdullah M, Omar M F. Thermal properties of nanocellulose-reinforced composites: a review. Journal of Applied Polymer Science, 2020, 137(11): 48544

    Article  CAS  Google Scholar 

  75. Muñoz-Núñez C, Fernández-García M, Muñoz-Bonilla A. Chitin nanocrystals: environmentally friendly materials for the development of bioactive films. Coatings, 2022, 12(2): 144

    Article  Google Scholar 

  76. Zhang Y, Song P, Liu H, Li Q, Fu S. Morphology, healing and mechanical performance of nanofibrillated cellulose reinforced poly(ε-caprolactone)/epoxy composites. Composites Science and Technology, 2016, 125: 62–70

    Article  CAS  Google Scholar 

  77. Ansari F, Berglund L A. Toward semistructural cellulose nanocomposites: the need for scalable processing and interface tailoring. Biomacromolecules, 2018, 19(7): 2341–2350

    Article  CAS  PubMed  Google Scholar 

  78. Parveen S, Rana S, Ferreira S, Filho A, Fangueiro R. Ultrasonic dispersion of micro crystalline cellulose for developing cementitious composites with excellent strength and stiffness. Industrial Crops and Products, 2018, 122: 156–165

    Article  CAS  Google Scholar 

  79. Sakakibara K, Moriki Y, Yano H, Tsujii Y. Strategy for the improvement of the mechanical properties of cellulose nanofiber-reinforced high-density polyethylene nanocomposites using diblock copolymer dispersants. ACS Applied Materials & Interfaces, 2017, 9(50): 44079–44087

    Article  CAS  Google Scholar 

  80. Wang J, Chen Z, Guan A, Demarquette N R, Naguib H E. Ionic liquids facilitated dispersion of chitin nanowhiskers for reinforced epoxy composites. Carbohydrate Polymers, 2020, 247: 116746

    Article  CAS  PubMed  Google Scholar 

  81. Song X, Zhou L, Ding B, Cui X, Duan Y, Zhang J. Simultaneous improvement of thermal stability and redispersibility of cellulose nanocrystals by using ionic liquids. Carbohydrate Polymers, 2018, 186: 252–259

    Article  CAS  PubMed  Google Scholar 

  82. Koga H, Nogi M, Isogai A. Ionic liquid mediated dispersion and support of functional molecules on cellulose fibers for stimuli-responsive chromic paper devices. ACS Applied Materials & Interfaces, 2017, 9(46): 40914–40920

    Article  CAS  Google Scholar 

  83. Liu Y, Wang Y, Nie Y, Wang C, Ji X, Zhou L, Pan F, Zhang S. Preparation of MWCNTS-graphene-cellulose fiber with ionic liquids. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 20013–20021

    Article  CAS  Google Scholar 

  84. Jon C S, Meng L Y, Li D. Recent review on carbon nanomaterials functionalized with ionic liquids in sample pretreatment application. Trends in Analytical Chemistry, 2019, 120: 115641

    Article  CAS  Google Scholar 

  85. Tirumali M, Kandasubramanian B, Kumaraswamy A, Subramani N K, Fabrication B S. physicochemical characterizations and electrical conductivity studies of modified carbon nanofiber-reinforced epoxy composites: effect of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Polymer-Plastics Technology and Engineering, 2018, 57(3): 218–228

    Article  CAS  Google Scholar 

  86. Javed K, Krumme A, Viirsalu M, Krasnou I, Plamus T, Vassiljeva V, Tarasova E, Savest N, Mere A, Mikli V, Danilson M, Kaljuvee T, Lange S, Yuan Q, Topham P D, Chen C M. A method for producing conductive graphene biopolymer nanofibrous fabrics by exploitation of an ionic liquid dispersant in electrospinning. Carbon, 2018, 140: 148–156

    Article  CAS  Google Scholar 

  87. Zhou L, Pan F, Zeng S, Li Q, Bai L, Liu Y, Nie Y. Ionic liquid assisted fabrication of cellulose-based conductive films for Li-ion battery. Journal of Applied Polymer Science, 2020, 137(35): 49430

    Article  CAS  Google Scholar 

  88. Soares B G. Ionic liquid: a smart approach for developing conducting polymer composites: a review. Journal of Molecular Liquids, 2018, 262: 8–18

    Article  CAS  Google Scholar 

  89. Singh N, Chen J, Koziol K K, Hallam K R, Janas D, Patil A J, Strachan A G, Hanley J, Rahatekar S S. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth. Nanoscale, 2016, 8(15): 8288–8299

    Article  CAS  PubMed  Google Scholar 

  90. Wu R, Ma L, Hou C, Meng Z, Guo W, Yu W, Yu R, Hu F, Liu X Y. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing. Small, 2019, 15(31): 1901558

    Article  Google Scholar 

  91. Wang W, Nie Y, Liu Y, Bai L, Gao J, Zhang S. Preparation of cellulose/multi-walled carbon nanotube composite membranes with enhanced conductive property regulated by ionic liquids. Fibers and Polymers, 2017, 18(9): 1780–1789

    Article  CAS  Google Scholar 

  92. Zhang S, Zhang J, Zhang Y, Deng Y. Nanoconfined ionic liquids. Chemical Reviews, 2017, 117(10): 6755–6833

    Article  CAS  PubMed  Google Scholar 

  93. Migliorini L, Piazzoni C, Pohako-Esko K, Di Girolamo M, Vitaloni A, Borghi F, Santaniello T, Aabloo A, Milani P. All-printed green micro-supercapacitors based on a natural-derived ionic liquid for flexible transient electronics. Advanced Functional Materials, 2021, 31(27): 2102180

    Article  CAS  Google Scholar 

  94. Li D, Fei X, Wang K, Xu L, Wang Y, Tian J, Li Y. A novel self-healing triple physical cross-linked hydrogel for antibacterial dressing. Journal of Materials Chemistry B, 2021, 9(34): 6844–6855

    Article  CAS  PubMed  Google Scholar 

  95. Dhakshinamoorthy A, Asiri A M, Alvaro M, Garcia H. Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions. Green Chemistry, 2018, 20(1): 86–107

    Article  CAS  Google Scholar 

  96. Yao X, Zhang S, Qian L, Wei N, Nica V, Coseri S, Han F. Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors. Advanced Functional Materials, 2022, 32(33): 2204565

    Article  CAS  Google Scholar 

  97. Wei S, Ching Y C, Chuah C H. Synthesis of chitosan aerogels as promising carriers for drug delivery: a review. Carbohydrate Polymers, 2020, 231: 115744

    Article  CAS  PubMed  Google Scholar 

  98. Rizzo C, Misia G, Marullo S, Billeci F, D’Anna F. Bio-based chitosan and cellulose ionic liquid gels: polymeric soft materials for the desulfurization of fuel. Green Chemistry, 2022, 24(3): 1318–1334

    Article  CAS  Google Scholar 

  99. Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, Ding J, Chen X. Antibacterial hydrogels. Advancement of Science, 2018, 5(5): 1700527

    Google Scholar 

  100. Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian Journal of Pharmaceutical Sciences, 2022, 17(3): 353–384

    Article  PubMed  PubMed Central  Google Scholar 

  101. Qu J, Zhao X, Liang Y, Zhang T, Ma P X, Guo B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials, 2018, 183: 185–199

    Article  CAS  PubMed  Google Scholar 

  102. Fan Y, Lüchow M, Zhang Y, Lin J, Fortuin L, Mohanty S, Brauner A, Malkoch M. Nanogel encapsulated hydrogels as advanced wound dressings for the controlled delivery of antibiotics. Advanced Functional Materials, 2021, 31(7): 2006453

    Article  CAS  Google Scholar 

  103. Wahid F, Zhong C, Wang H S, Hu X H, Chu L Q. Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles. Polymers, 2017, 9(12): 636

    Article  PubMed  PubMed Central  Google Scholar 

  104. Gao Y R, Cao J F, Shu Y, Wang J H. Research progress of ionic liquids-based gels in energy storage, sensors and antibacterial. Green Chemical Engineering, 2021, 2(4): 368–383

    Article  Google Scholar 

  105. Serwecińska L. Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water, 2020, 12(12): 3313

    Article  Google Scholar 

  106. Yu Y, Yang Z, Ren S, Gao Y, Zheng L. Multifunctional hydrogel based on ionic liquid with antibacterial performance. Journal of Molecular Liquids, 2020, 299: 112185

    Article  CAS  Google Scholar 

  107. Pernak J, Czerniak K, Niemczak M, Ławniczak Ł, Kaczmarek D K, Borkowski A, Praczyk T. Bioherbicidal ionic liquids. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2741–2750

    Article  CAS  Google Scholar 

  108. Nikfarjam N, Ghomi M, Agarwal T, Hassanpour M, Sharifi E, Khorsandi D, Ali Khan M, Rossi F, Rossetti A, Nazarzadeh Zare E, Rabiee N, Afshar D, Vosough M, Kumar Maiti T, Mattoli V, Lichtfouse E, Tay F R, Makvandi P. Antimicrobial ionic liquid-based materials for biomedical applications. Advanced Functional Materials, 2021, 31(42): 2104148

    Article  CAS  Google Scholar 

  109. Curreri A M, Mitragotri S, Tanner E E L. Recent advances in ionic liquids in biomedicine. Advanced Science, 2021, 8(17): 2004819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Eftekhari A, Saito T. Synthesis and properties of polymerized ionic liquids. European Polymer Journal, 2017, 90: 245–272

    Article  CAS  Google Scholar 

  111. Zhao H, Ren S, Zucker I, Bai Y, Wang Y. Antibiofouling polyvinylidene fluoride membrane functionalized by poly(ionic liquid) brushes via atom transfer radical polymerization. ACS ES&T Engineering, 2022, 2(7): 1239–1249

    Article  CAS  Google Scholar 

  112. Qu X, Zhao Y, Chen Z, Wang S, Ren Y, Wang Q, Shao J, Wang W, Dong X. Thermoresponsive lignin-reinforced poly(ionic liquid) hydrogel wireless strain sensor. Research, 2021, 2021: 9845482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Heo J W, Chen J, Kim M S, Kim J W, Zhang Z, Jeong H, Kim Y S. Eco-friendly and facile preparation of chitosan-based biofilms of novel acetoacetylated lignin for antioxidant and UV-shielding properties. International Journal of Biological Macromolecules, 2023, 225: 1384–1393

    Article  CAS  PubMed  Google Scholar 

  114. Shao L, Li Y, Ma Z, Bai Y, Wang J, Zeng P, Gong P, Shi F, Ji Z, Qiao Y, Xu R, Xu J, Zhang G, Wang C, Ma J. Highly sensitive strain sensor based on a stretchable and conductive poly(vinyl alcohol)/phytic acid/NH2-POSS hydrogel with a 3D microporous structure. ACS Applied Materials & Interfaces, 2020, 12(23): 26496–26508

    Article  CAS  Google Scholar 

  115. Chen T, Wei P, Chen G, Liu H, Mugaanire I T, Hou K, Zhu M. Heterogeneous structured tough conductive gel fibres for stable and high-performance wearable strain sensors. Journal of Materials Chemistry A, 2021, 9(20): 12265–12275

    Article  CAS  Google Scholar 

  116. Zhang Y, MohebbiPour A, Mao J, Mao J, Ni Y. Lignin reinforced hydrogels with multi-functional sensing and moist-electric generating applications. International Journal of Biological Macromolecules, 2021, 193: 941–947

    Article  CAS  PubMed  Google Scholar 

  117. Chen C, Wang Y, Zhou T, Wan Z, Yang Q, Xu Z, Li D, Jin Y. Toward strong and tough wood-based hydrogels for sensors. Biomacromolecules, 2021, 22(12): 5204–5213

    Article  CAS  PubMed  Google Scholar 

  118. Moreira I P, Esteves C, Palma S I C J, Ramou E, Carvalho A L M, Roque A C A. Synergy between silk fibroin and ionic liquids for active gas-sensing materials. Materials Today. Bio, 2022, 15: 100290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zia T, Usman M, Sabir A, Shafiq M, Khan R U. Development of inter-polymeric complex of anionic polysaccharides, alginate/k-carrageenan bio-platform for burn dressing. International Journal of Biological Macromolecules, 2020, 157: 83–95

    Article  CAS  PubMed  Google Scholar 

  120. Serra J P, Pereira N, Correia D M, Tubio C R, Vilas-Vilela J L, Costa C M, Lanceros-Mendez S. Carrageenan-based hybrid materials with ionic liquids for sustainable and recyclable printable pressure sensors. ACS Sustainable Chemistry & Engineering, 2022, 10(26): 8631–8640

    Article  CAS  Google Scholar 

  121. Xu J, Wang G, Wu Y, Ren X, Gao G. Ultrastretchable wearable strain and pressure sensors based on adhesive, tough, and self-healing hydrogels for human motion monitoring. ACS Applied Materials & Interfaces, 2019, 11(28): 25613–25623

    Article  CAS  Google Scholar 

  122. Ren Z, Ke T, Ling Q, Zhao L, Gu H. Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor. Carbohydrate Polymers, 2021, 273: 118533

    Article  CAS  PubMed  Google Scholar 

  123. Chen Y, Diaz-Dussan D, Wu D, Wang W, Peng Y Y, Asha A B, Hall D G, Ishihara K, Narain R. Bioinspired self-healing hydrogel based on benzoxaborole-catechol dynamic covalent chemistry for 3D cell encapsulation. ACS Macro Letters, 2018, 7(8): 904–908

    Article  CAS  PubMed  Google Scholar 

  124. Chen M, Tian J, Liu Y, Cao H, Li R, Wang J, Wu J, Zhang Q. Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing. Chemical Engineering Journal, 2019, 373: 413–424

    Article  CAS  Google Scholar 

  125. Xu C, Zhan W, Tang X, Mo F, Fu L, Lin B. Self-healing chitosan/vanillin hydrogels based on schiff-base bond/hydrogen bond hybrid linkages. Polymer Testing, 2018, 66: 155–163

    Article  CAS  Google Scholar 

  126. Yang X, Liu G, Peng L, Guo J, Tao L, Yuan J, Chang C, Wei Y, Zhang L. Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture. Advanced Functional Materials, 2017, 27(40): 1703174

    Article  Google Scholar 

  127. Gong Y, Li D, Luo C, Fu Q, Pan C. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chemistry, 2017, 19(17): 4132–4140

    Article  CAS  Google Scholar 

  128. Han J, Kwon J H, Lee J W, Lee J H, Roh K C. An effective approach to preparing partially graphitic activated carbon derived from structurally separated pitch pine biomass. Carbon, 2017, 118: 431–437

    Article  CAS  Google Scholar 

  129. Pourhosseini S E M, Norouzi O, Salimi P, Naderi H R. Synthesis of a novel interconnected 3D pore network algal biochar constituting iron nanoparticles derived from a harmful marine biomass as high-performance asymmetric supercapacitor electrodes. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4746–4758

    Article  CAS  Google Scholar 

  130. Ren Y, Guo J, Liu Z, Sun Z, Wu Y, Liu L, Yan F. Ionic liquid-based click-ionogels. Science Advances, 2019, 5(8): eaax0648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang Y, Qu Q, Gao S, Tang G, Liu K, He S, Huang C. Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon, 2019, 155: 706–726

    Article  CAS  Google Scholar 

  132. Sajjad M, Tao R, Qiu L. Phosphine based covalent organic framework as an advanced electrode material for electrochemical energy storage. Journal of Materials Science Materials in Electronics, 2021, 32(2): 1602–1615

    Article  CAS  Google Scholar 

  133. Chen Y, Liu Z, Sun L, Lu Z, Zhuo K. Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte. Journal of Power Sources, 2018, 390: 215–223

    Article  CAS  Google Scholar 

  134. Dhakal G, Mohapatra D, Kim Y I, Lee J, Kim W K, Shim J J. High-performance supercapacitors fabricated with activated carbon derived from lotus calyx biowaste. Renewable Energy, 2022, 189: 587–600

    Article  CAS  Google Scholar 

  135. Liu M, Wang X, Jiang Y, Sun J, Arai M. Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO2: current state-of-the art of catalyst development and reaction analysis. Catalysis Reviews. Science and Engineering, 2019, 61(2): 214–269

    Article  CAS  Google Scholar 

  136. Ding M, Flaig R W, Jiang H L, Yaghi O M. Carbon capture and conversion using metal-organic frameworks and mof-based materials. Chemical Society Reviews, 2019, 48(10): 2783–2828

    Article  CAS  PubMed  Google Scholar 

  137. Sharma T, Sharma S, Kamyab H, Kumar A. Energizing the CO2 utilization by chemo-enzymatic approaches and potentiality of carbonic anhydrases: a review. Journal of Cleaner Production, 2020, 247: 119138

    Article  CAS  Google Scholar 

  138. Wang Y, Nie J, Lu C, Wang F, Ma C, Chen Z, Yang G. Imidazolium-based polymeric ionic liquids for heterogeneous catalytic conversion of CO2 into cyclic carbonates. Microporous and Mesoporous Materials, 2020, 292: 109751

    Article  Google Scholar 

  139. Siewniak A, Forajter A, Szymańska K. Mesoporous silica-supported ionic liquids as catalysts for styrene carbonate synthesis from CO2. Catalysts, 2020, 10(11): 1363

    Article  CAS  Google Scholar 

  140. Zhu J, Wang S, Gu Y, Xue B, Li Y. A new and efficient method of graphene oxide immobilized with ionic liquids: promoted catalytic activity for CO2 cycloaddition. Materials Chemistry and Physics, 2018, 208: 68–76

    Article  CAS  Google Scholar 

  141. Sun J, Wang J, Cheng W, Zhang J, Li X, Zhang S, She Y. Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chemistry, 2012, 14(3): 654–660

    Article  CAS  Google Scholar 

  142. Wu X, Wang M, Xie Y, Chen C, Li K, Yuan M, Zhao X, Hou Z. Carboxymethyl cellulose supported ionic liquid as a heterogeneous catalyst for the cycloaddition of CO2 to cyclic carbonate. Applied Catalysis A: General, 2016, 519: 146–154

    Article  CAS  Google Scholar 

  143. Zhang Y, Zhang Y, Chen B, Qin L, Gao G. Swelling poly(ionic liquid)s: heterogeneous catalysts that are superior than homogeneous catalyst for ethylene carbonate transformation. ChemistrySelect, 2017, 2(29): 9443–9449

    Article  CAS  Google Scholar 

  144. Ge W, Shuai J, Wang Y, Zhou Y, Wang X. Progress on chemical modification of cellulose in “green” solvents. Polymer Chemistry, 2022, 13(3): 359–372

    Article  CAS  Google Scholar 

  145. Szalaty T J, Klapiszewski Ł, Jesionowski T. Recent developments in modification of lignin using ionic liquids for the fabrication of advanced materials—a review. Journal of Molecular Liquids, 2020, 301: 112417

    Article  CAS  Google Scholar 

  146. Wang Y R, Yin C C, Zhang J M, Wu J, Yu J, Zhang J. Functional cellulose materials fabricated by using ionic liquids as the solvent. Chinese Journal of Polymer Science, 2022, 40: 1–17

    CAS  Google Scholar 

  147. Müller K, Zollfrank C, Schmid M. Natural polymers from biomass resources as feedstocks for thermoplastic materials. Macromolecular Materials and Engineering, 2019, 304(5): 1800760

    Article  Google Scholar 

  148. Chudasama N A, Sequeira R A, Moradiya K, Prasad K. Seaweed polysaccharide based products and materials: an assessment on their production from a sustainability point of view. Molecules, 2021, 26(9): 2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Argüelles-Monal W M, Lizardi-Mendoza J, Fernández-Quiroz D, Recillas-Mota M T, Montiel-Herrera M. Chitosan derivatives: introducing new functionalities with a controlled molecular architecture for innovative materials. Polymers, 2018, 10(3): 342

    Article  PubMed  PubMed Central  Google Scholar 

  150. Trujillo-Rodríguez M J, Nan H, Varona M, Emaus M N, Souza I D, Anderson J L. Advances of ionic liquids in analytical chemistry. Analytical Chemistry, 2019, 91(1): 505–531

    Article  PubMed  Google Scholar 

  151. Ohno H, Yoshizawa-Fujita M, Kohno Y. Functional design of ionic liquids: unprecedented liquids that contribute to energy technology, bioscience, and materials sciences. Bulletin of the Chemical Society of Japan, 2019, 92(4): 852–868

    Article  CAS  Google Scholar 

  152. Zhu Y, Yu Z, Zhu J, Zhang Y, Ren X, Jiang F. Developing flame-retardant lignocellulosic nanofibrils through reactive deep eutectic solvent treatment for thermal insulation. Chemical Engineering Journal, 2022, 445: 136748

    Article  CAS  Google Scholar 

  153. Zabihi O, Ahmadi M, Yadav R, Mahmoodi R, Naderi Kalali E, Nikafshar S, Ghandehari Ferdowsi M R, Wang D Y, Naebe M. Novel phosphorous-based deep eutectic solvents for the production of recyclable macadamia nutshell-polymer biocomposites with improved mechanical and fire safety performances. ACS Sustainable Chemistry & Engineering, 2021, 9(12): 4463–4476

    Article  CAS  Google Scholar 

  154. Al Hokayem K, El Hage R, Svecova L, Otazaghine B, Le Moigne N, Sonnier R. Flame retardant-functionalized cotton cellulose using phosphonate-based ionic liquids. Molecules, 2020, 25(7): 1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nishita R, Kuroda K, Suzuki S, Ninomiya K, Takahashi K. Flame-retardant plant thermoplastics directly prepared by single ionic liquid substitution. Polymer Journal, 2019, 51(8): 781–789

    Article  CAS  Google Scholar 

  156. Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, 2003(1): 70–71

  157. Hansen B B, Spittle S, Chen B, Poe D, Zhang Y, Klein J M, Horton A, Adhikari L, Zelovich T, Doherty B W, Gurkan B, Maginn E J, Ragauskas A, Dadmun M, Zawodzinski T A, Baker G A, Tuckerman M E, Savinell R F, Sangoro J R. Deep eutectic solvents: a review of fundamentals and applications. Chemical Reviews, 2021, 121(3): 1232–1285

    Article  CAS  PubMed  Google Scholar 

  158. Wang Y M, Feng M, He B, Chen X Y, Zeng J L, Sun J. Ionothermal synthesis of carbon dots from cellulose in deep eutectic solvent: a sensitive probe for detecting Cu2+ and glutathione with “off-on” pattern. Applied Surface Science, 2022, 599: 153705

    Article  CAS  Google Scholar 

  159. Zainal-Abidin M H, Hayyan M, Ngoh G C, Wong W F. Doxorubicin loading on functional graphene as a promising nanocarrier using ternary deep eutectic solvent systems. ACS Omega, 2020, 5(3): 1656–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Reshmy R, Thomas D, Philip E, Paul S A, Madhavan A, Sindhu R, Binod P, Pugazhendhi A, Sirohi R, Tarafdar A, Pandey A. Potential of nanocellulose for wastewater treatment. Chemosphere, 2021, 281: 130738

    Article  Google Scholar 

  161. Mascheroni E, Rampazzo R, Ortenzi M A, Piva G, Bonetti S, Piergiovanni L. Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose, 2016, 23(1): 779–793

    Article  CAS  Google Scholar 

  162. Batmaz R, Mohammed N, Zaman M, Minhas G, Berry R M, Tam K C. Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose, 2014, 21(3): 1655–1665

    Article  CAS  Google Scholar 

  163. Sirviö J A, Ukkola J, Liimatainen H. Direct sulfation of cellulose fibers using a reactive deep eutectic solvent to produce highly charged cellulose nanofibers. Cellulose, 2019, 26(4): 2303–2316

    Article  Google Scholar 

  164. Liu S, Zhang Q, Gou S, Zhang L, Wang Z. Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers. Carbohydrate Polymers, 2021, 251: 117018

    Article  CAS  PubMed  Google Scholar 

  165. Yang Z, Asoh T A, Uyama H. Cationic functionalization of cellulose monoliths using a urea-choline based deep eutectic solvent and their applications. Polymer Degradation & Stability, 2019, 160: 126–135

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Startup Foundation of Beijing Institute of Technology (Nos. 3160011181808 and 3160011182007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Sun.

Ethics declarations

Conflicts of interest There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Yan, J., Xiao, W. et al. Latest advances in ionic liquids promoted synthesis and application of advanced biomass materials. Front. Chem. Sci. Eng. 17, 798–816 (2023). https://doi.org/10.1007/s11705-023-2316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2316-x

Keywords

Navigation