Skip to main content
Log in

Reconstruction of Cu-ZnO catalyst by organic acid and deactivation mechanism in liquid-phase hydrogenation of dimethyl succinate to 1,4-butanediol

  • Communication
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A reconstructed Cu-ZnO catalyst with improved stability was fabricated by organic acid treatment method for the liquid-phase hydrogenation of dimethyl succinate to 1,4-butanediol. According to the characterization results of the fresh Cu-ZnO and reconstructed Cu-ZnO, three different forms of ZnO were suggested to be presented on the catalysts: ZnO having strong interaction with Cu species, ZnO that weakly interacted with Cu species and isolated ZnO. The first form of ZnO was believed to be beneficial to the formation of efficient active site Cu+, while the latter two forms of ZnO took the main responsibility for the deactivation of Cu-ZnO catalysts in the liquid-phase hydrogenation of diesters. The reconstruction of the Cu-ZnO catalyst by the organic acid treatment method resulted in a new Cu-ZnO catalyst with more Cu+ and less ZnO species that leads to deactivation. Furthermore, the deactivation mechanism of Cu-ZnO catalysts in liquid-phase diester hydrogenation in continuous flow system was proposed: the deposition of the polyesters on the catalysts via transesterification catalyzed by weakly interacted ZnO and isolated ZnO leads to the deactivation. These results provided meaningful instructions for designing highly efficient Cu-Zn catalysts for similar ester hydrogenation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Le S D, Nishimura S. Effect of support on the formation of CuPd alloy nanoparticles for the hydrogenation of succinic acid. Applied Catalysis B: Environmental, 2021, 282: 119619

    Article  CAS  Google Scholar 

  2. Shang J J, Yao G, Guo R H, Zheng W, Gu L, Lan J W. Synthesis and characterization of biodegradable thermoplastic elastomers derived from N′,N-bis(2-carboxyethyl)-pyromellitimide, poly (butylene succinate) and polyethylene glycol. Frontiers of Chemical Science and Engineering, 2018, 12(3): 457–466

    Article  CAS  Google Scholar 

  3. Zhou X M. Synthesis and characterization of polyester copolymers based on poly(butylene succinate) and poly(ethylene glycol). Materials Science and Engineering C, 2012, 32(8): 2459–2463

    Article  CAS  Google Scholar 

  4. Huang Z W, Barnett K J, Chada J P, Brentzel Z J, Xu Z R, Dumesic J A, Huber G W. Hydrogenation of γ-butyrolactone to 1,4-butanediol over CuCo/TiO2 bimetallic catalysts. ACS Catalysis, 2017, 7(12): 8429–8440

    Article  CAS  Google Scholar 

  5. Delhomme C, Weuster-Botz D, Kühn F E. Succinic acid from renewable resources as a C4 building-block chemical—a review of the catalytic possibilities in aqueous media. Green Chemistry, 2009, 11(1): 13–26

    Article  CAS  Google Scholar 

  6. Chen L F, Guo P J, Zhu L J, Qiao M H, Shen W, Xu H L, Fan K N. Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol. Applied Catalysis A: General, 2009, 356(2): 129–136

    Article  CAS  Google Scholar 

  7. Ohlinger C, Kraushaar-Czarnetzki B. Improved processing stability in the hydrogenation of dimethyl maleate to γ-butyrolactone, 1,4-butanediol and tetrahydrofuran. Chemical Engineering Science, 2003, 58(8): 1453–1461

    Article  CAS  Google Scholar 

  8. Ying J T, Han X Q, Ma L, Lu C S, Feng F, Zhang Q F, Li X N. Effects of basic promoters on the catalytic performance of Cu/SiO2 in the hydrogenation of dimethyl maleate. Catalysts, 2019, 9(9): 704–713

    Article  CAS  Google Scholar 

  9. Müller S P, Kucher M, Ohlinger C, Kraushaar-Czarnetzki B. Extrusion of Cu/ZnO catalysts for the single-stage gas-phase processing of dimethyl maleate to tetrahydrofuran. Journal of Catalysis, 2003, 218(2): 419–426

    Article  Google Scholar 

  10. Li S M, Wang Y, Zhang J, Wang S P, Xu Y, Zhao Y J, Ma X B. Kinetics study of hydrogenation of dimethyl oxalate over Cu/SiO2 catalyst. Industrial & Engineering Chemistry Research, 2015, 54(4): 1243–1250

    Article  CAS  Google Scholar 

  11. Wang W C, Wang H, Zhang J W, Kong L X, Huang H J, Liu W, Wang S P, Ma X B, Zhao Y J. Determining roles of Cu0 in the chemosynthesis of diols via condensed diester hydrogenation on Cu/SiO2 catalyst. ChemCatChem, 2020, 12(15): 3849–3852

    Article  CAS  Google Scholar 

  12. Zhao Y J, Guo Z Y, Zhang H J, Peng B, Xu Y X, Wang Y, Zhang J, Xu Y, Wang S P, Ma X B. Hydrogenation of diesters on copper catalyst anchored on ordered hierarchical porous silica: pore size effect. Journal of Catalysis, 2018, 357: 223–237

    Article  Google Scholar 

  13. Schlander J H, Turek T. Gas-phase hydrogenolysis of dimethyl maleate to 1,4-butanediol and γ-butyrolactone over copper/zinc oxide catalysts. Industrial & Engineering Chemistry Research, 1999, 38(4): 1264–1270

    Article  CAS  Google Scholar 

  14. Küksal A, Klemm E, Emig G. Single-stage liquid phase hydrogenation of maleic anhydride to γ-butyrolactone, 1,4-butanediol and tetrahydrofurane on Cu/ZnO/Al2O3 catalysts. Studies in Surface Science and Catalysis, 2000, 130: 2111–2116

    Article  Google Scholar 

  15. Aubrecht J, Pospelova V, Kikhtyanin O, Lhotka M, Kubička D. Understanding of the key properties of supported Cu-based catalysts and their influence on ester hydrogenolysis. Catalysis Today, 2022, 397–399: 173–181

    Article  Google Scholar 

  16. Ding G Q, Zhu Y L, Zheng H Y, Zhang W, Li Y W. Study on the reaction pathway in the vapor-phase hydrogenation of biomass-derived diethyl succinate over CuO/ZnO catalyst. Catalysis Communications, 2010, 11(14): 1120–1124

    Article  CAS  Google Scholar 

  17. Besson M, Gallezot P. Deactivation of metal catalysts in liquid phase organic reactions. Catalysis Today, 2003, 81(4): 547–559

    Article  CAS  Google Scholar 

  18. Wan X Y, Ren D Z, Liu Y J, Fu J, Song Z Y, Jin F M, Huo Z B. Facile synthesis of dimethyl succinate via esterification of succinic anhydride over ZnO in methanol. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 2969–2975

    Article  CAS  Google Scholar 

  19. Karanwal N, Sibi M G, Khan M K, Myint A A, Chan Ryu B, Kang J W, Kim J. Trimetallic Cu–Ni—Zn/H-ZSM-5 catalyst for the one-pot conversion of levulinic acid to high-yield 1,4-pentanediol under mild conditions in an aqueous medium. ACS Catalysis, 2021, 11(5): 2846–2864

    Article  CAS  Google Scholar 

  20. Zhang L, Mao J B, Li S M, Yin J M, Sun X D, Guo X W, Song C S, Zhou J X. Hydrogenation of levulinic acid into gamma-valerolactone over in situ reduced CuAg bimetallic catalyst: strategy and mechanism of preventing Cu leaching. Applied Catalysis B: Environmental, 2018, 232: 1–10

    Article  CAS  Google Scholar 

  21. Zhao Y J, Zhang Y Q, Wang Y, Zhang J, Xu Y, Wang S P, Ma X B. Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation. Applied Catalysis A: General, 2017, 539: 59–69

    Article  CAS  Google Scholar 

  22. Yao Y Q, Wu X Q, Gutierrez O Y, Ji J, Jin P, Wang S P, Xu Y, Zhao Y J, Wang S P, Ma X B, Lercher J A. Roles of Cu+ and Cu0 sites in liquid-phase hydrogenation of esters on core-shell CuZnx@C catalysts. Applied Catalysis B: Environmental, 2020, 267: 118698

    Article  CAS  Google Scholar 

  23. Zhang B, Chen Y, Li J W, Pippel E, Yang H M, Gao Z, Qin Y. High efficiency Cu-ZnO hydrogenation catalyst: the tailoring of Cu-ZnO interface sites by molecular layer deposition. ACS Catalysis, 2015, 5(9): 5567–5573

    Article  CAS  Google Scholar 

  24. Dong X Q, Lei J W, Chen Y F, Jiang H X, Zhang M H. Selective hydrogenation of acetic acid to ethanol on Cu-In catalyst supported by SBA-15. Applied Catalysis B: Environmental, 2019, 244: 448–458

    Article  CAS  Google Scholar 

  25. Zhang J W, Kong L X, Chen Y, Huang H J, Zhang H H, Yao Y Q, Xu Y X, Xu Y, Wang S P, Ma X B, Zhao Y. Enhanced synergy between Cu0 and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation. Frontiers of Chemical Science and Engineering, 2021, 15(3): 666–678

    Article  CAS  Google Scholar 

  26. Westen T V, Groot R D. Effect of temperature cycling on ostwald ripening. Crystal Growth & Design, 2018, 18(9): 4952–4962

    Article  Google Scholar 

  27. Yan S, Salley S O, Simon Ng K Y. Simultaneous transesterification and esterification of unrefined or waste oils over ZnO-La2O3 catalysts. Applied Catalysis A: General, 2009, 353(2): 203–212

    Article  CAS  Google Scholar 

  28. Yan S, Mohan S, DiMaggio C, Kim M, Ng K Y S, Salley S O. Long term activity of modified ZnO nanoparticles for transesterification. Fuel, 2010, 89(10): 2844–2852

    Article  CAS  Google Scholar 

  29. Istadi I, Prasetyo S A, Nugroho T S. Characterization of K2O/CaO-ZnO catalyst for transesterification of soybean oil to biodiesel. Procedia Environmental Sciences, 2015, 23: 394–399

    Article  CAS  Google Scholar 

  30. Babu N S, Sree R, Prasad P S S, Lingaiah N. Room temperature transesterification of edible and nonedible oils using a heterogeneous strong basic Mg/La catalyst. Energy & Fuels, 2008, 22(3): 1965–1971

    Article  CAS  Google Scholar 

  31. Wu X M, Zhu F F, Qi J J, Zhao L Y, Yan F W, Li C H. Challenge of biodiesel production from sewage sludge catalyzed by KOH, KOH/activated carbon, and KOH/CaO. Frontiers of Environmental Science & Engineering, 2017, 11(2): 3–13

    Article  Google Scholar 

  32. Kikhtyanin O, Aubrecht J, Pospelova V, Kubička D. On the origin of the transesterification reaction route during dimethyl adipate hydrogenolysis. Applied Catalysis A: General, 2020, 606: 117825

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 21878227 and 22278309).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Xu or Yujun Zhao.

Electronic Supplementary Material

11705_2022_2281_MOESM1_ESM.pdf

Reconstruction of Cu-ZnO catalyst by organic acid and deactivation mechanism in liquid-phase hydrogenation of dimethyl succinate to 1,4-butanediol

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, F., Huang, H., Liu, W. et al. Reconstruction of Cu-ZnO catalyst by organic acid and deactivation mechanism in liquid-phase hydrogenation of dimethyl succinate to 1,4-butanediol. Front. Chem. Sci. Eng. 17, 1311–1319 (2023). https://doi.org/10.1007/s11705-022-2281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2281-9

Keywords

Navigation