Skip to main content
Log in

Direct pyrolysis to convert biomass to versatile 3D carbon nanotubes/mesoporous carbon architecture: conversion mechanism and electrochemical performance

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The massive conversion of resourceful biomass to carbon nanomaterials not only opens a new avenue to effective and economical disposal of biomass, but provides a possibility to produce highly valued functionalized carbon-based electrodes for energy storage and conversion systems. In this work, biomass is applied to a facile and scalable one-step pyrolysis method to prepare three-dimensional (3D) carbon nanotubes/mesoporous carbon architecture, which uses transition metal inorganic salts and melamine as initial precursors. The role of each employed component is investigated, and the electrochemical performance of the attained product is explored. Each component and precise regulation of their dosage is proven to be the key to successful conversion of biomass to the desired carbon nanomaterials. Owing to the unique 3D architecture and integration of individual merits of carbon nanotubes and mesoporous carbon, the assynthesized carbon nanotubes/mesoporous carbon hybrid exhibits versatile application toward lithium-ion batteries and Zn-air batteries. Apparently, a significant guidance on effective conversion of biomass to functionalized carbon nanomaterials can be shown by this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Titirici M, White J, Brun N, Budarin L, Su S, del Monte F, MacLachlan J. Sustainable carbon materials. Chemical Society Reviews, 2015, 44(1): 250–290

    Article  CAS  PubMed  Google Scholar 

  2. Liu X, Dai L. Carbon-based metal-free catalysts. Nature Reviews Materials, 2016, 1(11): 16064

    Article  CAS  Google Scholar 

  3. Yan J, Wang Q, Wei T, Fan Z. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Advanced Energy Materials, 2014, 4(4): 1300816

    Article  Google Scholar 

  4. Zhang Q, Cheng X, Huang J, Peng H, Wei F. Review of carbon materials for advanced lithium-sulfur batteries. Carbon, 2015, 81: 850

    Article  Google Scholar 

  5. Liu H, Liu X, Li W, Guo X, Wang Y, Wang G, Zhao D. Porous carbon composites for next generation rechargeable lithium batteries. Advanced Energy Materials, 2017, 7(24): 1700283

    Article  Google Scholar 

  6. Zheng M, Chi Y, Hu Q, Tang H, Jiang X, Zhang L, Xu Q. Carbon nanotube-based materials for lithium—sulfur batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(29): 17204–17241

    Article  CAS  Google Scholar 

  7. Dai L, Chang W, Baek B, Lu W. Carbon nanomaterials for advanced energy conversion and storage. Small, 2012, 8(8): 1130–1166

    Article  CAS  PubMed  Google Scholar 

  8. Kim M, Park T, Wang C, Tang J, Lim H, Hossain M, Konarova M, Yi J, Na J, Kim J, Yamauchi Y. Tailored nanoarchitecturing of microporous ZIF-8 to hierarchically porous double-shell carbons and their intrinsic electrochemical property. ACS Applied Materials & Interfaces, 2020, 12(30): 34065–34073

    Article  CAS  Google Scholar 

  9. Kim M, Xu X, Xin R, Earnshaw J, Ashok A, Kim J, Park T, Nanjundan A K, El-Said W A, Yi J, Na J, Yamauchi Y. KOH-activated hollow ZIF-8 derived porous carbon: nanoarchitectured control for upgraded capacitive deionization and supercapacitor. ACS Applied Materials & Interfaces, 2021, 13(44): 52034–52043

    Article  CAS  Google Scholar 

  10. Gupta N, Gupta M, Sharma K. Carbon nanotubes: synthesis, properties and engineering applications. Carbon Letters, 2019, 29(5): 419–447

    Article  Google Scholar 

  11. Moothi K, Iyuke S, Meyyappan M, Falcon R. Coal as a carbon source for carbon nanotube synthesis. Carbon, 2012, 50(8): 2679–2690

    Article  CAS  Google Scholar 

  12. Hoang V C, Hassan M, Gomes V G. Coal derived carbon nanomaterials recent advances in synthesis and applications. Applied Materials Today, 2018, 12: 342–358

    Article  Google Scholar 

  13. Zhang G, Liu X, Wang L, Fu H. Recent advances of biomass derived carbon-based materials for efficient electrochemical energy devices. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(17): 9277–9307

    Article  CAS  Google Scholar 

  14. Zhang S, Jiang F, Huang B C, Shen X C, Chen W J, Zhou T P, Yu H Q. Sustainable production of value-added carbon nanomaterials from biomass pyrolysis. Nature Sustainability, 2020, 3(9): 753–760

    Article  Google Scholar 

  15. Voloshin R A, Rodionova M V, Zharmukhamedov K, Nejat Veziroglu T, Allakhverdiev S I. Review: biofuel production from plant and algal biomass. International Journal of Hydrogen Energy, 2016, 41(39): 17257–17273

    Article  CAS  Google Scholar 

  16. Osman A I, Mehta N, Elgarahy A M, Al Hinai A, Al Muhtaseb A H, Rooney D W. Conversion of biomass to biofuels and life cycle assessment: a review. Environmental Chemistry Letters, 2021, 19(6): 4075–4118

    Article  CAS  Google Scholar 

  17. Alper K, Tekin K, Karagöz S, Ragauskas A J. Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. Sustainable Energy & Fuels, 2020, 4(9): 4390–4414

    Article  CAS  Google Scholar 

  18. Wang Z, Shen D, Wu C, Gu S. State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chemistry, 2018, 20(22): 5031–5057

    Article  CAS  Google Scholar 

  19. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 2009, 9(1): 30–35

    Article  CAS  PubMed  Google Scholar 

  20. Bi Z, Kong Q, Cao Y, Sun G, Su F, Wei X, Chen M. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(27): 16028–16045

    Article  CAS  Google Scholar 

  21. Balahmar N, Mitchell A C, Mokaya R. Generalized mechanochemical synthesis of biomass-derived sustainable carbons for high performance CO2 storage. Advanced Energy Materials, 2015, 5(22): 1500867

    Article  Google Scholar 

  22. Wang Y, Zhang M, Shen X, Wang H, Wang H, Xia K, Yin Z, Zhang Y. Biomass-derived carbon materials: controllable preparation and versatile applications. Small, 2021, 17(40): 2008079

    Article  CAS  Google Scholar 

  23. Yin J, Zhang W, Alhebshi N, Salah N, Alshareef H. Synthesis strategies of porous carbon for supercapacitor applications. Small Methods, 2020, 4(3): 1900853

    Article  CAS  Google Scholar 

  24. Lyu L, Seong K, Ko D, Choi J, Lee C, Hwang T, Cho Y, Jin X, Zhang W, Pang H, Piao Y. Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Materials Chemistry Frontiers, 2019, 3(1): 2543–2570

    Article  CAS  Google Scholar 

  25. Zhang M, Zhang J, Ran S, Sun W, Zhu Z. Biomass-derived sustainable carbon materials in energy conversion and storage applications: status and opportunities. A mini review. Electrochemistry Communications, 2022, 138: 107283

    Article  CAS  Google Scholar 

  26. Yang W, Liu X, Yue X, Jia J, Guo S. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. Journal of the American Chemical Society, 2015, 137(4): 1436–1439

    Article  CAS  PubMed  Google Scholar 

  27. Kang J, Duan X, Wang C, Sun H, Tan X, Tade M O, Wang S. Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability. Chemical Engineering Journal, 2018, 332: 398–408

    Article  CAS  Google Scholar 

  28. Chen S, Bao P, Wang G. Synthesis of Fe2O3-CNT-graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage. Nano Energy, 2013, 2(3): 425–434

    Article  CAS  Google Scholar 

  29. Yan N, Zhou X, Li Y, Wang F, Zhong H, Wang H, Chen Q. Fe2O3 nanoparticles wrapped in multi-walled carbon nanotubes with enhanced lithium storage capability. Scientific Reports, 2013, 3(1): 3392

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang B, Li T, Huang L, Ren Y, Sun D, Pang H, Tang Y. In situ immobilization of Fe/Fe3C/Fe2O3 hollow hetero-nanoparticles onto nitrogen-doped carbon nanotubes towards high-efficiency electrocatalytic oxygen reduction. Nanoscale, 2021, 13(10): 5400–5409

    Article  CAS  PubMed  Google Scholar 

  31. Bistamam M S A, Azam M A. Tip-growth of aligned carbon nanotubes on cobalt catalyst supported by alumina using alcohol catalytic chemical vapor deposition. Results in Physics, 2014, 4: 105–106

    Article  Google Scholar 

  32. Gohier A, Ewels C P, Minea T M, Djouadi M A. Carbon nanotube growth mechanism switches from tip- to base-growth with decreasing catalyst particle size. Carbon, 2008, 46(10): 1331–1338

    Article  CAS  Google Scholar 

  33. Behan J A, Mates Torres E, Stamatin S N, Domínguez C, Iannaci A, Fleischer K, Colavita P E. Oxygen reduction reaction: untangling cooperative effects of pyridinic and graphitic nitrogen sites at metal-free N-doped carbon electrocatalysts for the oxygen reduction reaction. Small, 2019, 15(48): 1970256

    Article  Google Scholar 

  34. Li J, Zhang Y, Zhang X, Han J, Wang Y, Gu L, Song B. Direct transformation from graphitic C3N4 to nitrogen-doped graphene: an efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Applied Materials & Interfaces, 2015, 7(35): 19626–19634

    Article  CAS  Google Scholar 

  35. Yang L, Huang N, Lu C, Yu H, Sun P, Lv X, Sun X. Atomically dispersed and nanoscaled Co species embedded in micro-/mesoporous carbon nanosheet/nanotube architecture with enhanced oxygen reduction and evolution bifunction for Zn-air batteries. Chemical Engineering Journal, 2021, 404: 127112

    Article  CAS  Google Scholar 

  36. Biemolt J, Rothenberg G, Yan N. Understanding the roles of amorphous domains and oxygen-containing groups of nitrogen-doped carbon in oxygen reduction catalysis: toward superior activity. Inorganic Chemistry Frontiers, 2020, 7(1): 177–185

    Article  CAS  Google Scholar 

  37. Cheng J, Wu D, Wang T. N-doped carbon nanosheet supported Fe2O3/Fe3C nanoparticles as efficient electrode materials for oxygen reduction reaction and supercapacitor application. Inorganic Chemistry Communications, 2020, 117: 107952

    Article  CAS  Google Scholar 

  38. Tian Y, Xu L, Qian J, Bao J, Yan C, Li H, Zhang S. Fe3C/Fe2O3 heterostructure embedded in N-doped graphene as a bifunctional catalyst for quasi-solid-state zinc-air batteries. Carbon, 2019, 146: 763–771

    Article  CAS  Google Scholar 

  39. Zhang J, Zhang M, Zeng Y, Chen J, Qiu L, Zhou H, Zhu Z. Single Fe atom on hierarchically porous S, N-co doped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable Zn-air batteries. Small, 2019, 15(24): 1900307

    Article  Google Scholar 

  40. Han J, Bao H, Wang J Q, Zheng L, Sun S, Wang Z L, Sun C. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Applied Catalysis B: Environmental, 2021, 280: 119411

    Article  CAS  Google Scholar 

  41. Wang X R, Liu J Y, Liu Z W, Wang W C, Luo J, Han X P, Yang J. Identifying the key role of pyridinic-N-co bonding in synergistic electrocatalysis for reversible ORR/OER. Advanced Materials, 2018, 30(23): 1800005

    Article  Google Scholar 

  42. Takeyasu K, Furukawa M, Shimoyama Y, Singh S K, Nakamura J. Role of pyridinic nitrogen in the mechanism of the oxygen reduction reaction on carbon electrocatalysts. Angewandte Chemie International Edition, 2021, 60(10): 5121–5124

    Article  CAS  PubMed  Google Scholar 

  43. Gu S, Christensen T, Hsieh C T, Mallick B C, Gandomi Y A, Li J, Chang J K. Improved lithium storage capacity and high rate capability of nitrogen-doped graphite-like electrode materials prepared from thermal pyrolysis of graphene quantum dots. Electrochimica Acta, 2020, 354: 136642

    Article  CAS  Google Scholar 

  44. He B, Li G, Chen L, Chen Z, Jing M, Zhou M, Hou Z. A facile N doping strategy to prepare mass-produced pyrrolic N-enriched carbon fibers with enhanced lithium storage properties. Electrochimica Acta, 2018, 278: 106–113

    Article  CAS  Google Scholar 

  45. Li X F, Lian K Y, Liu L, Wu Y, Qiu Q, Jiang J, Luo Y. Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia. Scientific Reports, 2016, 6(1): 23495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lai Q, Zheng L, Liang Y, He J, Zhao J, Chen J. Metal—organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catalysis, 2017, 7(3): 1655–1663

    Article  CAS  Google Scholar 

  47. Chen L, Li Z, Li G, Zhou M, He B, Ouyang J, Hou Z. A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability. Journal of Materials Science and Technology, 2020, 44: 229–236

    Article  CAS  Google Scholar 

  48. Xu C, Chen L, Wen Y, Qin S, Li H, Hou Z, Kuang Y. A cooperative protection strategy to synthesize highly active and durable Fe/N co-doped carbon towards oxygen reduction reaction in Zn-air batteries. Materials Today Energy, 2021, 21: 100721

    Article  CAS  Google Scholar 

  49. Xu J, Wu C, Yu Q, Zhao Y, Li X, Guan L. Ammonia defective etching and nitrogen-doping of porous carbon toward high exposure of heme-derived Fe-Nx site for efficient oxygen reduction. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 551–560

    Article  CAS  Google Scholar 

  50. Liu Y, Li X, Haridas A K, Sun Y, Heo J, Ahn J H, Lee Y. Biomass-derived graphitic carbon encapsulated Fe/Fe3C composite as an anode material for high-performance lithium ion batteries. Energies, 2020, 13(4): 827

    Article  CAS  Google Scholar 

  51. Zheng J, Kong F, Tao S, Qian B A. Fe2O3-Fe3C heterostructure encapsulated into a carbon matrix for the anode of lithium-ion batteries. Chemical Communications, 2021, 57(70): 8818–8821

    Article  CAS  PubMed  Google Scholar 

  52. Kim M, Fernando J F, Wang J, Nanjundan A K, Na J, Hossain M S A, Nara H, Martin D, Sugahara Y, Golberg D, Yamauchi Y. Efficient lithium-ion storage using a heterostructured porous carbon framework and its in situ transmission electron microscopy study. Chemical Communications, 2022, 58(6): 863–866

    Article  CAS  PubMed  Google Scholar 

  53. Chen X, Cheng X, Liu Z. High sulfur-doped hard carbon anode from polystyrene with enhanced capacity and stability for potassium-ion storage. Journal of Energy Chemistry, 2022, 68: 688–698

    Article  CAS  Google Scholar 

  54. Kim M, Fernando J F, Li Z, Alowasheeir A, Ashok A, Xin R, Martin D, Nanjundan A K, Golberg D, Yamauchi Y, Amiralian N, Li J. Ultra-stable sodium ion storage of biomass porous carbon derived from sugarcane. Chemical Engineering Journal, 2022, 445: 136344

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2019YFC1907900), Science & Technology Talents Lifting Project of Hunan Province (Grant No. 2022TJ-N16) and the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 21A0392).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haihui Zhou or Liang Chen.

Electronic Supplementary Material

11705_2022_2266_MOESM1_ESM.pdf

Direct pyrolysis to convert biomass to versatile 3D carbon nanotubes/mesoporous carbon architecture: conversion mechanism and electrochemical performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Li, S., Hou, Z. et al. Direct pyrolysis to convert biomass to versatile 3D carbon nanotubes/mesoporous carbon architecture: conversion mechanism and electrochemical performance. Front. Chem. Sci. Eng. 17, 679–690 (2023). https://doi.org/10.1007/s11705-022-2266-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2266-8

Keywords

Navigation