Skip to main content
Log in

Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors with high energy density

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Porous carbons with high specific area surfaces are promising electrode materials for supercapacitors. However, their production usually involves complex, time-consuming, and corrosive processes. Hence, a straightforward and effective strategy is presented for producing highly porous carbons via a self-activation procedure utilizing zinc gluconate as the precursor. The volatile nature of zinc at high temperatures gives the carbons a large specific surface area and an abundance of mesopores, which avoids the use of additional activators and templates. Consequently, the obtained porous carbon electrode delivers a satisfactory specific capacitance and outstanding cycling durability of 90.9% after 50000 cycles at 10 A·g−1. The symmetric supercapacitors assembled by the optimal electrodes exhibit an acceptable rate capability and a distinguished cycling stability in both aqueous and ionic liquid electrolytes. Accordingly, capacitance retention rates of 77.8% and 85.7% are achieved after 50000 cycles in aqueous alkaline electrolyte and 10000 cycles in ionic liquid electrolyte. Moreover, the symmetric supercapacitors deliver high energy/power densities of 49.8 W·h·kg−1/2477.8 W·kg−1 in the Et4NBF4 electrolyte, outperforming the majority of previously reported porous carbon-based symmetric supercapacitors in ionic liquid electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poonam S K, Arora A, Tripathi S K. Review of supercapacitors: materials and devices. Journal of Energy Storage, 2019, 21: 801–825

    Article  Google Scholar 

  2. Qin Y, Liao Y, Liu J, Tian C, Xu H, Wu Y. Research progress of wood-derived energy storage materials. Journal of Forestry Engineering, 2021, 6(5): 1–13 (in Chinese)

    Google Scholar 

  3. Jin Z, Yang L, Shi S, Wang T, Duan G, Liu X, Li Y. Flexible polydopamine bioelectronics. Advanced Functional Materials, 2021, 31(30): 2103391

    Article  CAS  Google Scholar 

  4. Chen Y, Zhang Q, Chi M, Guo C, Wang S, Min D. Preparation and performance of different carbonized wood electrodes. Journal of Forestry Engineering, 2022, 7(3): 127–135 (in Chinese)

    CAS  Google Scholar 

  5. Yu J, Liu S, Duan G, Fang H, Hou H. Dense and thin coating of gel polymer electrolyte on sulfur cathode toward high performance Li-sulfur battery. Composites Communications, 2020, 19: 239–245

    Article  Google Scholar 

  6. Gonzalez A, Goikolea E, Barrena J A, Mysyk R. Review on supercapacitors: technologies and materials. Renewable & Sustainable Energy Reviews, 2016, 58: 1189–1206

    Article  CAS  Google Scholar 

  7. Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012, 41(2): 797–828

    Article  CAS  PubMed  Google Scholar 

  8. Guo W, Guo X, Yang L, Wang T, Zhang M, Duan G, Liu X, Li Y. Synthetic melanin facilitates MnO supercapacitors with high specific capacitance and wide operation potential window. Polymer, 2021, 235: 124276

    Article  CAS  Google Scholar 

  9. Han Z, Zhong W, Wang K. Preparation and examination of nitrogen-doped bamboo porous carbon for supercapacitor materials. Journal of Forestry Engineering, 2020, 5(5): 76–83 (in Chinese)

    Google Scholar 

  10. Wang Y, Zhang L, Hou H, Xu W, Duan G, He S, Liu K, Jiang S. Recent progress in carbon-based materials for supercapacitor electrodes: a review. Journal of Materials Science, 2021, 56(1): 173–200

    Article  CAS  Google Scholar 

  11. Yang L, Guo X, Jin Z, Guo W, Duan G, Liu X, Li Y. Emergence of melanin-inspired supercapacitors. Nano Today, 2021, 37: 101075

    Article  CAS  Google Scholar 

  12. Han X, Xiao G, Wang Y, Chen X, Duan G, Wu Y, Gong X, Wang H. Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(44): 23059–23095

    Article  CAS  Google Scholar 

  13. You B, Wang L L, Yao L, Yang J. Three dimensional N-doped graphene-CNT networks for supercapacitor. Chemical Communications, 2013, 49(44): 5016–5018

    Article  CAS  PubMed  Google Scholar 

  14. Wang W, Lv H, Du J, Chen A. Fabrication of N-doped carbon nanobelts from a polypyrrole tube by confined pyrolysis for supercapacitors. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1312–1321

    Article  CAS  Google Scholar 

  15. Cheng Y L, Huang L, Xiao X, Yao B, Yuan L Y, Li T Q, Hu Z M, Wang B, Wan J, Zhou J. Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy, 2015, 15: 66–74

    Article  CAS  Google Scholar 

  16. Faraji S, Ani F N. The development supercapacitor from activated carbon by electroless plating—a review. Renewable & Sustainable Energy Reviews, 2015, 42: 823–834

    Article  CAS  Google Scholar 

  17. Wang N, Huang X, Zhang L, Hu J, Chao Y, Zhao R. Pyrolysis transformation of ZIF-8 wrapped with polytriazine to nitrogen enriched core-shell polyhedrons carbon for supercapacitor. Frontiers of Chemical Science and Engineering, 2021, 15(4): 944–953

    Article  CAS  Google Scholar 

  18. Hao P, Zhao Z H, Tian J, Li H D, Sang Y H, Yu G W, Cai H Q, Liu H, Wong C P, Umar A. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale, 2014, 6(20): 12120–12129

    Article  CAS  PubMed  Google Scholar 

  19. Wang H, Niu H T, Wang H J, Wang W Y, Jin X, Wang H X, Zhou H, Lin T. Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance. Journal of Power Sources, 2021, 482: 228986

    Article  CAS  Google Scholar 

  20. Song M Y, Zhou Y H, Ren X, Wan J F, Du Y Y, Wu G, Ma F W. Biowaste-based porous carbon for supercapacitor: the influence of preparation processes on structure and performance. Journal of Colloid and Interface Science, 2019, 535: 276–286

    Article  CAS  PubMed  Google Scholar 

  21. Ai T, Wang Z, Zhang H R, Hong F H, Yan X, Su X H. Novel synthesis of nitrogen-containing bio-phenol resin and its molten salt activation of porous carbon for supercapacitor electrode. Materials, 2019, 12(12): 1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dai J D, Wang L L, Xie A, He J S, Yan Y S. Reactive template and confined self-activation strategy: three-dimensional interconnected hierarchically porous N/O-doped carbon foam for enhanced supercapacitors. ACS Sustainable Chemistry & Engineering, 2020, 8(2): 739–748

    Article  CAS  Google Scholar 

  23. Dat N T, Tran T T V, Van C N, Vo D V N, Kongparakul S, Zhang H B, Guan G Q, Samart C. Carbon sequestration through hydrothermal carbonization of expired fresh milk and its application in supercapacitor. Biomass and Bioenergy, 2020, 143: 105836

    Article  CAS  Google Scholar 

  24. Dong D, Zhang Y S, Wang T, Wang J W, Romero C E, Pan W P. Enhancing the pore wettability of coal-based porous carbon as electrode materials for high performance supercapacitors. Materials Chemistry and Physics, 2020, 252: 123381

    Article  CAS  Google Scholar 

  25. Dong D, Zhang Y S, Xiao Y, Wang T, Wang J W, Gao W. Oxygen-enriched coal-based porous carbon under plasma-assisted MgCO3 activation as supercapacitor electrodes. Fuel, 2022, 309: 122168

    Article  CAS  Google Scholar 

  26. Chen J, Xiao G, Duan G, Wu Y, Zhao X, Gong X. Structural design of carbon dots/porous materials composites and their applications. Chemical Engineering Journal, 2021, 421: 127743

    Article  CAS  Google Scholar 

  27. Kong D B, Qin C Y, Cao L, Fang Z M, Lai F L, Lin Z D, Zhang P, Li W, Lin H J. Synthesis of biomass-based porous carbon nanofibre/polyaniline composites for supercapacitor electrode materials. International Journal of Electrochemical Science, 2020, 15(1): 265–279

    Article  CAS  Google Scholar 

  28. Liu N. Influence of ZnCl2 activation on structure and electrochemical performance of carbon aerogel spheres. Acta Physico-Chimica Sinica, 2013, 29(3): 551–556 (in Chinese)

    Google Scholar 

  29. Zhang Q, Yan B, Feng L, Zheng J, You B, Chen J, Zhao X, Zhang C, Jiang S, He S. Progress in the use of organic potassium salts for the synthesis of porous carbon nanomaterials: microstructure engineering for advanced supercapacitors. Nanoscale, 2022, 14(23): 8216–8244

    Article  CAS  PubMed  Google Scholar 

  30. Lee K S, Seo Y J, Jeong H T. Capacitive behavior of functionalized activated carbon-based all-solid-state supercapacitor. Carbon Letters, 2021, 31(5): 1041–1049

    Article  Google Scholar 

  31. Peng C, Zeng T Q, Kuai Z Y, Li Z F, Yu Y, Zuo J T, Jin Y, Wang Y H, Li L. A self-activation green strategy to fabricate N/P Co-doped carbon for excellent electrochemical performance. Journal of the Electrochemical Society, 2019, 166(14): A3287–A3293

    Article  CAS  Google Scholar 

  32. Rufford T E, Hulicova-Jurcakova D, Khosla K, Zhu Z H, Lu G Q. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. Journal of Power Sources, 2010, 195(3): 912–918

    Article  CAS  Google Scholar 

  33. Sandhiya M, Nadira M P, Sathish M. Fabrication of flexible supercapacitor using N-doped porous activated carbon derived from poultry waste. Energy & Fuels, 2021, 35(18): 15094–15100

    Article  CAS  Google Scholar 

  34. Wu X, Ding B, Zhang C, Li B, Fan Z. Self-activation of nitrogen and sulfur dual-doping hierarchical porous carbons for asymmetric supercapacitors with high energy densities. Carbon, 2019, 153: 225–233

    Article  CAS  Google Scholar 

  35. Yan D, Liu L, Wang X Y, Xu K, Zhong J H. Biomass-derived activated carbon nanoarchitectonics with hibiscus flowers for high-performance supercapacitor electrode applications. Chemical Engineering & Technology, 2022, 45(4): 649–657

    Article  CAS  Google Scholar 

  36. Yang B B, Zhang D Y, He J J, Wang Y L, Wang K J, Li H X, Wang Y, Miao L, Ren R Y, Xie M. Simple and green fabrication of a biomass-derived N and O self-doped hierarchical porous carbon via a self-activation route for supercapacitor application. Carbon Letters, 2020, 30(6): 709–719

    Article  Google Scholar 

  37. Wang T, Tan S, Liang C. Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation. Carbon, 2009, 47(7): 1880–1883

    Article  CAS  Google Scholar 

  38. Yue Z, Mangun C L, Economy J. Preparation of fibrous porous materials by chemical activation: 1. ZnCl2 activation of polymer-coated fibers. Carbon, 2002, 40(8): 1181–1191

    Article  CAS  Google Scholar 

  39. Yao L, Wu Q, Zhang P, Zhang J, Wang D, Li Y, Ren X, Mi H, Deng L, Zheng Z. Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Advanced Materials, 2018, 30(11): 1706054

    Article  Google Scholar 

  40. Shang Z, An X, Zhang H, Shen M, Baker F, Liu Y, Liu L, Yang J, Cao H, Xu Q, Liu H, Ni Y. Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon, 2020, 161: 62–70

    Article  CAS  Google Scholar 

  41. Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X, Stephenson T J, King’ondu C K, Holt C M B, Olsen B C, Tak J K, Harfield D, Anyia A O, Mitlin D. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano, 2013, 7(6): 5131–5141

    Article  CAS  PubMed  Google Scholar 

  42. Zheng W, Halim J, Persson P O Å, Rosen J, Barsoum M W. MXene-based symmetric supercapacitors with high voltage and high energy density. Materials Reports: Energy, 2022, 2(1): 100078

    Article  CAS  Google Scholar 

  43. Shao R, Niu J, Liang J, Liu M, Zhang Z, Dou M, Huang Y, Wang F. Mesopore- and macropore-dominant nitrogen-doped hierarchically porous carbons for high-energy and ultrafast supercapacitors in non-aqueous electrolytes. ACS Applied Materials & Interfaces, 2017, 9(49): 42797–42805

    Article  CAS  Google Scholar 

  44. Wong S I, Lin H, Ma T, Sunarso J, Wong B T, Jia B. Binary ionic liquid electrolyte design for ultrahigh-energy density graphene-based supercapacitors. Materials Reports: Energy, 2022, 2(2): 100093

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the starting grant from Jiangxi Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Zhang, Chunmei Zhang or Shaohua Jiang.

Electronic Supplementary Material

11705_2022_2250_MOESM1_ESM.pdf

Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors with high energy density

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Zhang, H., Wang, Y. et al. Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors with high energy density. Front. Chem. Sci. Eng. 17, 387–394 (2023). https://doi.org/10.1007/s11705-022-2250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2250-3

Keywords

Navigation