Skip to main content
Log in

Mechanism of ethanol/water reverse separation through a functional graphene membrane: a molecular simulation investigation

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Reverse-selective membranes have attracted considerable interest for bioethanol production. However, to date, the reverse-separation performance of ethanol/water is poor and the separation mechanism is unclear. Graphene-based membranes with tunable apertures and functional groups have shown substantial potential for use in molecular separation. Using molecular dynamics simulations, for the first time, we reveal two-way selectivity in ethanol/water separation through functional graphene membranes. Pristine graphene (PG) exhibits reverse-selective behavior with higher ethanol fluxes than water, resulting from the preferential adsorption for ethanol. Color flow mappings show that this ethanol-permselective process is initiated by the presence of ethanol-enriched and water-barren pores; this has not been reported in previous studies. In contrast, water molecules are preferred for hydroxylated graphene membranes because of the synergistic effects of molecular sieving and functional-group attraction. A simulation of the operando condition shows that the PG membrane with an aperture size of 3.8 Å achieves good separation performance, with an ethanol/water separation factor of 34 and a flux value of 69.3 kg·m−2·h−1·bar−1. This study provides new insights into the reverse-selective mechanism of porous graphene membranes and a new avenue for efficient biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merkel T C, Freeman B D, Spontak R J, He Z, Pinnau I, Meakin P, Hill A J. Ultrapermeable, reverse-selective nanocomposite membranes. Science, 2002, 296(5567): 519–522

    Article  CAS  PubMed  Google Scholar 

  2. Khakpay A, Scovazzo P. Reverse-selective behavior of room temperature ionic liquid based membranes for natural gas processing. Journal of Membrane Science, 2018, 545: 204–212

    Article  CAS  Google Scholar 

  3. Yu S, Qin B, Yang F, Xie M, Xue L, Zhao Z, Wang K. Unlocking the limits of diffusion and adsorption of metal-crosslinked reduced graphene oxide membranes for gas separation. Applied Surface Science, 2022, 586: 152868

    Article  CAS  Google Scholar 

  4. Lau C H, Li P, Li F, Chung T S, Paul D R. Reverse-selective polymeric membranes for gas separations. Progress in Polymer Science, 2013, 38(5): 740–766

    Article  CAS  Google Scholar 

  5. Mushardt H, Kramer V, Hülagü D, Brinkmann T, Kraume M. Development of solubility selective mixed matrix membranes for gas separation. Chemie ingenieur technik, 2014, 86(1–2): 83–91

    Article  CAS  Google Scholar 

  6. Ahmed I, Pa N F C, Nawawi M G M, Rahman W A W A. Modified polydimethylsiloxane/polystyrene blended IPN pervaporation membrane for ethanol/water separation. Journal of Applied Polymer Science, 2011, 122(4): 2666–2679

    Article  CAS  Google Scholar 

  7. Cheng X Q, Konstas K, Doherty C M, Wood C D, Mulet X, Xie Z, Ng D, Hill M R, Lau C H, Shao L. Organic microporous nanofillers with unique alcohol affinity for superior ethanol recovery toward sustainable biofuels. ChemSusChem, 2017, 10(9): 1887–1891

    Article  CAS  PubMed  Google Scholar 

  8. Sanaeepur H, Ebadi Amooghin A, Bandehali S, Moghadassi A, Matsuura T, van der Bruggen B. Polyimides in membrane gas separation: monomer’s molecular design and structural engineering. Progress in Polymer Science, 2019, 91: 80–125

    Article  CAS  Google Scholar 

  9. Li Y, Chung T S, Cao C, Kulprathipanja S. The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite a mixed matrix membranes. Journal of Membrane Science, 2005, 260(1): 45–55

    Article  CAS  Google Scholar 

  10. Mao H, Zhen H G, Ahmad A, Zhang A S, Zhao Z P. In situ fabrication of MOF nanoparticles in PDMS membrane via interfacial synthesis for enhanced ethanol permselective pervaporation. Journal of Membrane Science, 2019, 573: 344–358

    Article  CAS  Google Scholar 

  11. Pan Y, Zhu T, Xia Q, Yu X, Wang Y. Constructing superhydrophobic ZIF-8 layer with bud-like surface morphology on PDMS composite membrane for highly efficient ethanol/water separation. Journal of Environmental Chemical Engineering, 2021, 9(1): 104977

    Article  CAS  Google Scholar 

  12. Pan Y, Yu X. Preparation of zeolitic imidazolate framework-91 and its modeling for pervaporation separation of water/ethanol mixtures. Separation and Purification Technology, 2020, 237: 116330

    Article  CAS  Google Scholar 

  13. He X, Wang T, Huang J, Chen J, Li J. Fabrication and characterization of superhydrophobic PDMS composite membranes for efficient ethanol recovery via pervaporation. Separation and Purification Technology, 2020, 241: 116675

    Article  CAS  Google Scholar 

  14. Zhu T, Xu S, Yu F, Yu X, Wang Y. ZIF-8@GO composites incorporated polydimethylsiloxane membrane with prominent separation performance for ethanol recovery. Journal of Membrane Science, 2020, 598: 117681

    Article  CAS  Google Scholar 

  15. Zhu T, Yu X, Yi M, Wang Y. Facile covalent crosslinking of zeolitic imidazolate framework/polydimethylsiloxane mixed matrix membrane for enhanced ethanol/water separation performance. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12664–12676

    Article  CAS  Google Scholar 

  16. Kang J, Choi Y, Kim J P, Kim J H, Kim J Y, Kwon O, Kim D I, Kim D W. Thermally-induced pore size tuning of multilayer nanoporous graphene for organic solvent nanofiltration. Journal of Membrane Science, 2021, 637: 119620

    Article  CAS  Google Scholar 

  17. Liu Y, Bai Z, Lin G, Wang L, Xu X, He L, Liu X. Covalent cross-linking mediated TA-APTES NPs to construct a high-efficiency GO composite membrane for dye/salt separation. Applied Surface Science, 2022, 584: 152595

    Article  CAS  Google Scholar 

  18. Liu G, Jin W, Xu N. Graphene-based membranes. Chemical Society Reviews, 2015, 44(15): 5016–5030

    Article  CAS  PubMed  Google Scholar 

  19. Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache M V, Paradinas M, Panighel M, Ceballos G, Valenzuela S O, Peña D, Mugarza A. Bottom-up synthesis of multifunctional nanoporous graphene. Science, 2018, 360(6385): 199–203

    Article  CAS  PubMed  Google Scholar 

  20. Jang J, Nam Y T, Kim D, Kim Y J, Kim D W, Jung H T. Turbostratic nanoporous carbon sheet membrane for ultrafast and selective nanofiltration in viscous green solvents. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(17): 8292–8299

    Article  CAS  Google Scholar 

  21. Gravelle S, Yoshida H, Joly L, Ybert C, Bocquet L. Carbon membranes for efficient water—ethanol separation. Journal of Chemical Physics, 2016, 145(12): 124708

    Article  PubMed  Google Scholar 

  22. Kommu A, Singh J K. Separation of ethanol and water using graphene and hexagonal boron nitride slit pores: a molecular dynamics study. Journal of Physical Chemistry C, 2017, 121(14): 7867–7880

    Article  CAS  Google Scholar 

  23. Liu Q, Chen M, Mao Y, Liu G. Theoretical study on Janus graphene oxide membrane for water transport. Frontiers of Chemical Science and Engineering, 2021, 15(4): 913–921

    Article  CAS  Google Scholar 

  24. Liu Q, Gupta K M, Xu Q, Liu G, Jin W. Gas permeation through double-layer graphene oxide membranes: the role of interlayer distance and pore offset. Separation and Purification Technology, 2019, 209: 419–425

    Article  CAS  Google Scholar 

  25. Liu Q, Wu Y, Wang X, Liu G, Zhu Y, Tu Y, Lu X, Jin W. Molecular dynamics simulation of water—ethanol separation through monolayer graphene oxide membranes: significant role of O/C ratio and pore size. Separation and Purification Technology, 2019, 224: 219–226

    Article  CAS  Google Scholar 

  26. Cohen-Tanugi D, Grossman J C. Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608

    Article  CAS  PubMed  Google Scholar 

  27. Li H, Lv W, Xu J, Hu J, Liu H. Can flexible framework fillers keep breathing in mixed matrix membranes to enhance separation performance? Journal of Membrane Science, 2020, 614: 118426

    Article  CAS  Google Scholar 

  28. Gupta K M, Liu J, Jiang J. A molecular simulation protocol for membrane pervaporation. Journal of Membrane Science, 2019, 572: 676–682

    Article  CAS  Google Scholar 

  29. Liu Q, Zhu H, Liu G, Jin W. Efficient separation of (C1—C2) alcohol solutions by graphyne membranes: a molecular simulation study. Journal of Membrane Science, 2022, 644: 120139

    Article  CAS  Google Scholar 

  30. Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L. Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 1983, 79(2): 926–935

    Article  CAS  Google Scholar 

  31. Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 1996, 118(45): 11225–11236

    Article  CAS  Google Scholar 

  32. Wennberg C L, Murtola T, Páll S, Abraham M J, Hess B, Lindahl E. Direct-space corrections enable fast and accurate Lorentz—Berthelot combination rule Lennard—Jones lattice summation. Journal of Chemical Theory and Computation, 2015, 11(12): 5737–5746

    Article  CAS  PubMed  Google Scholar 

  33. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E, Berendsen H J. GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 2005, 26(16): 1701–1718

    Article  CAS  PubMed  Google Scholar 

  34. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. Journal of Molecular Graphics, 1996, 14(1): 33–38

    Article  CAS  PubMed  Google Scholar 

  35. Wei W, Liu J, Jiang J. Atomistic simulation study of polyarylate/zeolitic-imidazolate framework mixed-matrix membranes for water desalination. ACS Applied Nano Materials, 2020, 3(10): 10022–10031

    Article  CAS  Google Scholar 

  36. Cohen-Tanugi D, Grossman J C. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. Journal of Chemical Physics, 2014, 141(7): 074704

    Article  PubMed  Google Scholar 

  37. Liu J, Wei W, Jiang J. A highly rigid and conjugated microporous polymer membrane for solvent permeation and biofuel purification: a molecular simulation study. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2892–2900

    Article  CAS  Google Scholar 

  38. Guo Y, Xie W, Li H, Li J, Hu J, Liu H. Construction of hydrophobic channels on Cu(I)-MOF surface to improve selective adsorption desulfurization performance in presence of water. Separation and Purification Technology, 2022, 285: 120287

    Article  CAS  Google Scholar 

  39. An S, Lu C, Xu Q, Lian C, Peng C, Hu J, Zhuang X, Liu H. Constructing catalytic crown ether-based covalent organic frameworks for electroreduction of CO2. ACS Energy Letters, 2021, 6(10): 3496–3502

    Article  CAS  Google Scholar 

  40. Cohen-Tanugi D, Lin L C, Grossman J C. Multilayer nanoporous graphene membranes for water desalination. Nano Letters, 2016, 16(2): 1027–1033

    Article  CAS  PubMed  Google Scholar 

  41. Zhang L, Wu G, Jiang J. Adsorption and diffusion of CO2 and CH4 in zeolitic imidazolate framework-8: effect of structural flexibility. Journal of Physical Chemistry C, 2014, 118(17): 8788–8794

    Article  CAS  Google Scholar 

  42. Nakagawa K, Araya S, Ushio K, Kunimatsu M, Yoshioka T, Shintani T, Kamio E, Tung K L, Matsuyama H. Controlling interlayer spacing and organic solvent permeation in laminar graphene oxide membranes modified with crosslinker. Separation and Purification Technology, 2021, 276: 119279

    Article  CAS  Google Scholar 

  43. Wang J, Zhang P, Liang B, Liu Y, Xu T, Wang L, Cao B, Pan K. Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment. ACS Applied Materials & Interfaces, 2016, 8(9): 6211–6218

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the University Natural Science Research Project of Anhui Province (Grant No. KJ2020A0286), the Anhui Provincial Natural Science Foundation (Grant No. 2108085QB50), and the Natural Science Foundation of Jiangsu Province (Grant No. BK20220002). The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanan Guo or Gongping Liu.

Electronic Supplementary Material

11705_2022_2246_MOESM1_ESM.pdf

Mechanism of ethanol/water reverse separation through a functional graphene membrane: a molecular simulation investigation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Wang, X., Guo, Y. et al. Mechanism of ethanol/water reverse separation through a functional graphene membrane: a molecular simulation investigation. Front. Chem. Sci. Eng. 17, 347–357 (2023). https://doi.org/10.1007/s11705-022-2246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2246-z

Keywords

Navigation