Skip to main content
Log in

Development of an in-situ H2 reduction and moderate oxidation method for 3,5-dimethylpyridine hydrogenation in trickle bed reactor

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The Ru/C catalyst prepared by impregnation method was used for hydrogenation of 3,5-dimethylpyridine in a trickle bed reactor. Under the same reduction conditions (300 °C in H2), the catalytic activity of the non-in-situ reduced Ru/C-n catalyst was higher than that of the in-situ reduced Ru/C-y catalyst. Therefore, an in-situ H2 reduction and moderate oxidation method was developed to increase the catalyst activity. Moreover, the influence of oxidation temperature on the developed method was investigated. The catalysts were characterized by Brunauer—Emmett—Teller method, hydrogen temperature programmed reduction H2-TPR, hydrogen temperature-programmed dispersion (H2-TPD), X-ray diffraction, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, O2 chemisorption and oxygen temperature-programmed dispersion (O2-TPD) analyses. The results showed that there existed an optimal Ru/RuOx ratio for the catalyst, and the highest 3,5-dimethylpyridine conversion was obtained for the Ru/C-i1 catalyst prepared by in-situ H2 reduction and moderate oxidation (oxidized at 100 °C). Excessive oxidation (200 °C) resulted in a significant decrease in the Ru/RuOx ratio of the in-situ H2 reduction and moderate oxidized Ru/C-i2 catalyst, the interaction between RuOx species and the support changed, and the hard-to-reduce RuOx species was formed, leading to a significant decrease in catalyst activity. The developed in-situ H2 reduction and moderate oxidation method eliminated the step of the non-in-situ reduction of catalyst outside the trickle bed reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sridharan V, Suryavanshi P A, Menéndez J C. Advances in the chemistry of tetrahydroquinolines. Chemical Reviews, 2011, 111(11): 7157–7259

    Article  CAS  Google Scholar 

  2. Scott J D, Williams R M. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chemical Reviews, 2002, 102(5): 1669–1730

    Article  CAS  Google Scholar 

  3. Creemer L C, Kirst H A, Shryock T R, Campbell J B, Webb A G. Synthesis, antimicrobial activity and in vivo fluorine NMR of a hex fluorinated derivative of tilmicosin. Journal of Antibiotics, 1995, 48(7): 671–675

    Article  CAS  Google Scholar 

  4. Wan K R, Lin T, Chen J, Li L, Zeng Y K, Zeng L H, Zhang Z X. The preparation method and application of the catalyst used for continuous preparation of 3,5-dimethyl piperidine. Chinese Patent, 201611126557.5, 2016-12-09

  5. Beier R C, Creemer L C, Ziprin R L, Nisbet D J. Production and characterization of monoclonal antibodies against the antibiotic tilmicosin. Journal of Agricultural and Food Chemistry, 2005, 53(25): 9679–9688

    Article  CAS  Google Scholar 

  6. Zones S I, Nakagawa Y, Evans S T, Lee G S. Zeolite SSZ-39. US Patent, 5958370A, 1999-09-28

  7. Xu H, Zhang J, Wu Q M, Chen W, Lei C, Zhu Q Y, Han S C, Fei J H, Zheng A M, Zhu L F, Meng X, Maurer S, Dai D, Parvulescu A N, Müller U, Xiao F S. Direct synthesis of aluminosilicate SSZ-39 aeolite using colloidal ailica as a starting source. ACS Applied Materials & Interfaces, 2019, 11(26): 23112–23117

    Article  CAS  Google Scholar 

  8. Lin T, Ma X X. Development of a new continuous process for the production of 3,5-dimethylpiperidine. Chinese Journal of Chemical Engineering, 2021, 41: 374–383

    Article  Google Scholar 

  9. Ranade V V. Trickle bed reactors: reactor engineering & applications. Chemical Industry Press, 2003: 205–215

  10. Takasaki M, Motoyama Y, Higashi K, Yoon S H, Mochida I, Nagashima H. Ruthenium nanoparticles on nano-level-controlled carbon supports as highly effective catalysts for arene hydrogenation. ChemInform, 2007, 39(12): 1524–1533

    Google Scholar 

  11. Zhao H, Song H, Zhao J, Yang J, Yan L, Chou L. The reactivity and deactivation mechanism of Ru@C catalyst over hydrogenation of aromatics to cyclohexane derivatives. ChemistrySelect, 2020, 5(14): 4316–4327

    Article  CAS  Google Scholar 

  12. Wang Y, Rong Z M, Wang Y, Qu J P. Ruthenium nanoparticles loaded on functionalized graphene for liquid-phase hydrogenation of fine chemicals: comparison with carbon nanotube. Journal of Catalysis, 2016, 333: 8–16

    Article  CAS  Google Scholar 

  13. Wang Y, Rong Z M, Wang Y, Zhang P, Wang Y, Qu J P. Ruthenium nanoparticles loaded on multiwalled carbon nanotubes for liquid-phase hydrogenation of fine chemicals: an exploration of confinement effect. Journal of Catalysis, 2015, 329: 95–106

    Article  CAS  Google Scholar 

  14. Ban C, Yang S, Kim H, Kim D H. Effect of Cu addition to carbon-supported Ru catalysts on hydrogenation of alginic acid into sugar alcohols. Applied Catalysis A: General, 2019, 578(25): 98–104

    Article  CAS  Google Scholar 

  15. Ban C, Yang S, Kim H, Kim D H. Catalytic hydrogenation of alginic acid into sugar alcohols over ruthenium supported on nitrogen-doped mesoporous carbons. Catalysis Today, 2020, 352(1): 66–72

    Article  Google Scholar 

  16. Liang C H, Wei Z B, Xin Q, Li C. Ammonia synthesis over Ru/C catalysts with different carbon supports promoted by barium and potassium compounds. Applied Catalysis A: General, 2000, 208(1–2): 193–201

    Google Scholar 

  17. Upare P P, Lee J M, Hwang D W, Halligudi S B, Hwang Y K, Chang J S. Selective hydrogenation of levulinic acid to γ-valerolactone over carbon-supported noble metal catalysts. Journal of Industrial and Engineering Chemistry, 2011, 17(2): 287–292

    Article  CAS  Google Scholar 

  18. Song W, Chen Z, Lai W, Rodríguez-Ramos I, Yi X, Weng W, Fang W. Effect of lanthanum promoter on the catalytic performance of levulinic acid hydrogenation over Ru/carbon fiber catalyst. Applied Catalysis A: General, 2017, 540(25): 21–30

    Article  CAS  Google Scholar 

  19. Ma Y C, Lan G J, Fu W Z, Lai Y, Han W F, Tang H D, Liu H Z, Li Y. Role of surface defects of carbon nanotubes on catalytic performance of barium promoted ruthenium catalyst for ammonia synthesis. Journal of Energy Chemistry, 2020, 29(2): 79–86

    Article  Google Scholar 

  20. Guerrero-Ruiz A, Bachiller-Baeza B, Rodríguez-Ramos I. RodríGuez-Ramos I. Catalytic properties of carbon-supported ruthenium catalysts for n-hexane conversion. Applied Catalysis A: General, 1998, 173(2): 231–238

    Article  CAS  Google Scholar 

  21. Ma Y, Cheng S Q, Wu X D, Ma T X, Liu L P, Jin B F, Liu M H, Liu J B, Ran R, Si Z, Weng D. Improved hydrothermal durability of Cu-SSZ-13 NH3-SCR catalyst by surface Al modification: affinity and passivation. Journal of Catalysis, 2022, 405: 199–211

    Article  CAS  Google Scholar 

  22. Tong Q, Cai T, Chen X T, Xu P, Ma Y L, Zhao K, He D. In-situ reduction-passivation synthesis of magnetic octahedron accumulated by Fe@Fe3O4-C core@complex-shell for the activation of persulfate. Journal of Environmental Chemical Engineering, 2022, 10(4): 108116

    Article  CAS  Google Scholar 

  23. Birke P, Geyer R, Hoheisel K, Keck M, Pachulski A R, Schödel R. Stability of Ni/SiO2 catalysts. Chemieingenieurtechnik (Weinheim), 2012, 84(1–2): 165–168

    CAS  Google Scholar 

  24. Franz R, Tichelaar F D, Uslamin E A, Pidko E A. Dry reforming of methane to test passivation stability of Ni/Al2O3 catalysts. Applied Catalysis A, General, 2021, 612(25): 117987

    Article  CAS  Google Scholar 

  25. Wolf M, Fischer N, Claeys M. Effectiveness of catalyst passivation techniques studied in situ with a magnetometer. Catalysis Today, 2016, 275(15): 135–140

    Article  CAS  Google Scholar 

  26. Fratalocchi L, Groppi G, Visconti C G, Lietti L, Tronconi E. On the passivation of platinum promoted cobalt-based Fischer—Tropsch catalyst. Catalysis Today, 2020, 342(15): 79–87

    Article  CAS  Google Scholar 

  27. Wyvratt B M, Gaudet J R, Thompson L T. Effects of passivation on synthesis, structure and composition of molybdenum carbide supported platinum water—gas shift catalysts. Journal of Catalysis, 2015, 330: 280–287

    Article  CAS  Google Scholar 

  28. Hammache S, Goodwin J GJr, Oukaci R. Passivation of a Co-Ru/γ-Al2O3 Fichhrr—Tropsch catalyst. Catalysis Today, 2002, 71(3): 361–367

    Article  CAS  Google Scholar 

  29. Moreno-Castilla C, López-Ramón M V, Carrasco-Marín F. Changes in surface chemistry of activated carbons by wet oxidation. Carbon, 2000, 38(14): 1995–2001

    Article  CAS  Google Scholar 

  30. Collins J, Ngo T, Qu D, Foster M. Spectroscopic investigations of sequential nitric acid treatments on granulated activated carbon: effects of surface oxygen groups on π density. Carbon, 2013, 57: 174–183

    Article  CAS  Google Scholar 

  31. Lin T, Wan K R, Chen J, Zhang Z X, Zeng Y K, Zeng L H, Gao W. An online device used for evaluating the fixed bed catalyst performance. Chinese patent, 201520609359.9, 2015-08-13

  32. Gao P, Wang A, Wang X, Zhang T. Synthesis and catalytic performance of highly ordered Ru-containing mesoporous carbons for hydrogenation of cinnamaldehyde. Catalysis Letters, 2008, 125(3–4): 289–295

    Article  CAS  Google Scholar 

  33. Su F, Lv L, Lee F Y, Liu T, Cooper A I, Zhao X S. Thermally reduced ruthenium nanoparticles as a highly active heterogeneous catalyst for hydrogenation of monoaromatics. Journal of the American Chemical Society, 2007, 129(46): 14213–14223

    Article  CAS  Google Scholar 

  34. Lozano-Castelló D, Calo J M, Cazorla-Amorós D, Linares-Solano A. Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon, 2007, 45(13): 2529–2536

    Article  Google Scholar 

  35. Veerakumar P, Dhenadhayalan N, Lin K C, Liu S B. Highly stable ruthenium nanoparticles on 3D mesoporous carbon: an excellent opportunity for reduction reactions. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(46): 23448–23457

    Article  CAS  Google Scholar 

  36. Li Y, Pan C, Han W, Chai H, Liu H. An efficient route for the preparation of activated carbon supported ruthenium catalysts with high performance for ammonia synthesis. Catalysis Today, 2011, 174(1): 97–105

    Article  CAS  Google Scholar 

  37. Panagiotopoulou P, Vlachos D G. Liquid phase catalytic transfer hydrogenation of furfural over a Ru/C catalyst. ChemSusChem, 2014, 480: 17–24

    CAS  Google Scholar 

  38. Jae J, Zheng W, Karim A M, Guo W, Lobo R F, Vlachos D G. The role of Ru and RuO2 in the catalytic transfer hydrogenation of 5-hydroxymethylfurfural for the production of 2,5-dimethylfuran. ChemCatChem, 2014, 6(3): 848–856

    Article  CAS  Google Scholar 

  39. Li C, Shao Z, Pang M, Williams C, Zhang X F, Liang C H. Carbon nanotubes supported mono- and bimetallic Pt and Ru catalysts for selective hydrogenation of phenylacetylene. Industrial & Engineering Chemistry Research, 2012, 51(13): 4934–4941

    Article  CAS  Google Scholar 

  40. Martínez-Prieto L M, Puche M, Cerezo-Navarrete C, Chaudret B. Uniform Ru nanoparticles on N-doped graphene for selective hydrogenation of fatty acids to alcohols. Journal of Catalysis, 2019, 377: 429–437

    Article  Google Scholar 

  41. Hossain M A, Phung T K Rahaman M S, Tulaphol S, Jasinski J B, Sathitsuksanoh N. Catalytic cleavage of the β-O-4 aryl ether bonds of lignin model compounds by Ru/C catalyst. Applied Catalysis A: General, 2019, 582(25): 117100

    Article  CAS  Google Scholar 

  42. Li Z Q, Lu C J, Xia Z P Zhou Y, Luo Z. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon, 2007, 45(8): 1686–1695

    Article  CAS  Google Scholar 

  43. Kerdi F, Rass H A, Pinel C Besson M, Peru G, Leger B, Rio S, Monflier E, Ponchel A. Evaluation of surface properties and pore structure of carbon on the activity of supported Ru catalysts in the aqueous-phase aerobic oxidation of HMF to FDCA. Applied Catalysis A: General, 2015, 506(5): 206–219

    Article  CAS  Google Scholar 

  44. Zanutelo C Landers R Carvalho W A, Cobo A J G. Carbon support treatment effect on Ru/C catalyst performance for benzene partial hydrogenation. Applied Catalysis A: General, 2011, 409–410(15): 174–180

    Article  Google Scholar 

  45. Taboada C D, Batista J, Pintar A, Levec J. Preparation, characterization and catalytic properties of carbon nanofiber-supported Pt, Pd, Ru monometallic particles in aqueous-phase reactions. Applied Catalysis B: Environmental, 2009, 89(3–4): 375–382

    Article  CAS  Google Scholar 

  46. Lin B, Guo Y, Lin J, Ni J, Lin J, Jiang L, Wang Y. Deactivation study of carbon-supported ruthenium catalyst with potassium promoter. Applied Catalysis A: General, 2017, 541(5): 1–7

    Article  CAS  Google Scholar 

  47. Huang H, Dai Q, Wang X Y. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene. Applied Catalysis B: Environmental, 2014, 158–159: 96–105

    Article  Google Scholar 

  48. Rossetti I, Pernicone N, Forni L. Characterisation of Ru/C catalysts for ammonia synthesis by oxygen chemisorption. Applied Catalysis A: General, 2003, 248(1–2): 97–103

    Article  CAS  Google Scholar 

  49. Michel C, Gallezot P. Why is ruthenium an efficient catalyst for the aqueous-phase hydrogenation of bio-sourced carbonyl compounds? ACS Catalysis, 2015, 5(7): 4130–4132

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, T., Ma, X. Development of an in-situ H2 reduction and moderate oxidation method for 3,5-dimethylpyridine hydrogenation in trickle bed reactor. Front. Chem. Sci. Eng. 16, 1807–1817 (2022). https://doi.org/10.1007/s11705-022-2243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2243-2

Keywords

Navigation