Skip to main content
Log in

NiCo2O4@quinone-rich N-C core-shell nanowires as composite electrode for electric double layer capacitor

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The bind-free carbon cloth-supported electrodes hold the promises for high-performance electrochemical capacitors with high specific capacitance and good cyclic stability. Considering the close connection between their performance and the amount of carbon material loaded on the electrodes, in this work, NiCo2O4 nanowires were firstly grown on the substrate of active carbon cloth to provide the necessary surface area in the longitudinal direction. Then, the quinone-rich nitrogen-doped carbon shell structure was formed around NiCo2O4 nanowires, and the obtained composite was used as electrode for electric double layer capacitor. The results showed that the composite electrode displayed an area-specific capacitance of 1794 mF·cm−2 at the current density of 1 mA·cm−2. The assembled symmetric electric double layer capacitor achieved a high energy density of 6.55 mW·h·cm−3 at a power density of 180 mW·cm−3. The assembled symmetric capacitor exhibited a capacitance retention of 88.96% after 10000 charge/discharge cycles at the current density of 20 mA·cm−2. These results indicated the potentials in the preparation of the carbon electrode materials with high energy density and good cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang I, Kwon D, Kim M S, Jung J C. A comparative study of activated carbon aerogel and commercial activated carbons as electrode materials for organic electric double-layer capacitors. Carbon, 2018, 132: 503–511

    Article  CAS  Google Scholar 

  2. Chen X, Qiu L, Ren J, Guan G, Lin H, Zhang Z, Chen P, Wang Y, Peng H. Novel electric double-layer capacitor with a coaxial fiber structure. Advanced Materials, 2013, 25(44): 6436–6441

    Article  CAS  PubMed  Google Scholar 

  3. Sun W, Lipka S M, Swartz C, Williams D, Yang F. Hemp-derived activated carbons for supercapacitors. Carbon, 2016, 103: 181–192

    Article  CAS  Google Scholar 

  4. Qu K, Zheng Y, Jiao Y, Zhang X, Dai S, Qiao S Z. Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting. Advanced Energy Materials, 2016, 7(9): 1602068

    Article  Google Scholar 

  5. Yadav S, Devi A. Recent advancements of metal oxides/Nitrogen-doped graphene nanocomposites for supercapacitor electrode materials. Journal of Energy Storage, 2020, 30: 101486

    Article  Google Scholar 

  6. Lokhande V C, Lokhande A C, Lokhande C D, Kim J H, Ji T. Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. Journal of Alloys and Compounds, 2016, 682: 381–403

    Article  CAS  Google Scholar 

  7. Choi H, Yoon H. Nanostructured electrode materials for electrochemical capacitor applications. Nanomaterials, 2015, 5(2): 906–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bavio M A, Acosta G G, Kessler T, Visintin A. Flexible symmetric and asymmetric supercapacitors based in nanocomposites of carbon cloth/polyaniline-carbon nanotubes. Energy, 2017, 130: 22–28

    Article  CAS  Google Scholar 

  9. Yang Q, Lu Z, Li T, Sun X, Liu J. Hierarchical construction of core-shell metal oxide nanoarrays with ultrahigh areal capacitance. Nano Energy, 2014, 7: 170–178

    Article  CAS  Google Scholar 

  10. Ren Y, Yu C, Chen Z, Xu Y. Two-dimensional polymer nanosheets for efficient energy storage and conversion. Nano Research, 2020, 14(6): 2023–2036

    Article  Google Scholar 

  11. Wu F, Liu M, Li Y, Feng X, Zhang K, Bai Y, Wang X, Wu C. High-mass-loading electrodes for advanced secondary batteries and supercapacitors. Electrochemical Energy Reviews, 2021, 4(2): 382–446

    Article  CAS  Google Scholar 

  12. Jiang L B, Yuan X Z, Liang J, Zhang J, Wang H, Zeng G M. Nanostructured core-shell electrode materials for electrochemical capacitors. Journal of Power Sources, 2016, 331: 408–425

    Article  CAS  Google Scholar 

  13. Ariyanto T, Dyatkin B, Zhang G R, Kern A, Gogotsi Y, Etzold B J M. Synthesis of carbon core-shell pore structures and their performance as supercapacitors. Microporous and Mesoporous Materials, 2015, 218: 130–136

    Article  CAS  Google Scholar 

  14. Qian X, Lv Y, Li W, Xia Y, Zhao D. Multiwall carbon nanotube@mesoporous carbon with core-shell configuration: a well-designed composite-structure toward electrochemical capacitor application. Journal of Materials Chemistry, 2011, 21(34): 13025–13031

    Article  CAS  Google Scholar 

  15. Wu Z S, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Mullen K. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Advanced Materials, 2012, 24(37): 5130–5135

    Article  CAS  PubMed  Google Scholar 

  16. Feng X, Bai Y, Liu M, Li Y, Yang H, Wang X, Wu C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy & Environmental Science, 2021, 14(4): 2036–2089

    Article  CAS  Google Scholar 

  17. Tang J, Salunkhe R R, Liu J, Torad N L, Imura M, Furukawa S, Yamauchi Y. Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. Journal of the American Chemical Society, 2015, 137(4): 1572–1580

    Article  CAS  PubMed  Google Scholar 

  18. Xie C, Yang S, Xu X, Shi J W, Niu C. Core-shell structured carbon nanotubes/N-doped carbon layer nanocomposites for supercapacitor electrodes. Journal of Nanoparticle Research, 2020, 22(1): 25–31

    Article  CAS  Google Scholar 

  19. Zheng Y, Zhao W, Jia D, Cui L, Liu J. Thermally-treated and acid-etched carbon fiber cloth based on pre-oxidized polyacrylonitrile as self-standing and high area-capacitance electrodes for flexible supercapacitors. Chemical Engineering Journal, 2019, 364: 70–78

    Article  CAS  Google Scholar 

  20. Gu Y J, Wen W, Wu J M. Simple air calcination affords commercial carbon cloth with high areal specific capacitance for symmetrical supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(42): 21078–21086

    Article  CAS  Google Scholar 

  21. Liang Z, Xia H, Liu H, Zhang L, Zhou J, Li H, Xie W. Enhanced capacitance characteristic of microporous carbon spheres through surface modification by oxygen-containing groups. Results in Physics, 2019, 15: 102586–102593

    Article  Google Scholar 

  22. Liao J, Wang X, Wang Y, Su S, Nairan A, Kang F, Yang C. Lavender-like cobalt hydroxide nanoflakes deposited on nickel nanowire arrays for high-performance supercapacitors. RSC Advances, 2018, 8(31): 17263–17271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pan Q, Duan C, Liu H, Li M, Zhao Z, Zhao D, Duan Y, Chen Y, Wang Y. Hierarchical vertically aligned titanium carbide (MXene) array for flexible all-solid-state supercapacitor with high volumetric capacitance. ACS Applied Energy Materials, 2019, 2(9): 6834–6840

    Article  CAS  Google Scholar 

  24. Zhang H, Xiao D, Li Q, Ma Y, Yuan S, Xie L, Chen C, Lu C. Porous NiCo2O4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density. Journal of Energy Chemistry, 2018, 27(1): 195–202

    Article  Google Scholar 

  25. Han L, Li K, Sun J, Song Q, Wang Y. Reinforcing effects of carbon nanotube on carbon/carbon composites before and after heat treatment. Materials Science and Engineering A, 2018, 735: 10–18

    Article  CAS  Google Scholar 

  26. Liu D, Fu C, Zhang N, Zhou H, Kuang Y. Three-dimensional porous nitrogen doped graphene hydrogel for high energy density supercapacitors. Electrochimica Acta, 2016, 213: 291–297

    Article  CAS  Google Scholar 

  27. Chen Y, Ji S, Wang H, Linkov V, Wang R. Synthesis of porous nitrogen and sulfur co-doped carbon beehive in a high-melting-point molten salt medium for improved catalytic activity toward oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43(10): 5124–5132

    Article  CAS  Google Scholar 

  28. Bokobza L, Bruneel J L, Couzi M. Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black. Chemical Physics Letters, 2013, 590: 153–159

    Article  CAS  Google Scholar 

  29. Kordek K, Jiang L, Fan K, Zhu Z, Xu L, Al-Mamun M, Dou Y, Chen S, Liu P, Yin H, Rutkowski P, Zhao H. Two-step activated carbon cloth with oxygen-rich functional groups as a high-performance additive-free air electrode for flexible zinc-air batteries. Advanced Energy Materials, 2018, 9(4): 1802936–1802944

    Article  Google Scholar 

  30. Xiang Y, Yang T, Tong K, Fu T, Tang Y, Liu F, Xiong Z, Si Y, Guo C. Constructing flexible and self-standing electrocatalyst for oxygen reduction reaction by in situ doping nitrogen atoms into carbon cloth. Applied Surface Science, 2020, 523: 146424–146431

    Article  CAS  Google Scholar 

  31. Shen W, Fan W. Nitrogen-containing porous carbons: synthesis and application. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(4): 999–1013

    Article  CAS  Google Scholar 

  32. Wang W, Liu W, Zeng Y, Han Y, Yu M, Lu X, Tong Y. A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth. Advanced Materials, 2015, 27(23): 3572–3578

    Article  CAS  PubMed  Google Scholar 

  33. Lv X, Ji S, Lu J, Zhang L, Wang X, Wang H. Quick in situ generation of a quinone-enriched surface of N-doped carbon cloth electrodes for electric double-layer capacitors. Dalton Transactions, 2021, 50(10): 3651–3659

    Article  CAS  PubMed  Google Scholar 

  34. Zhang J, Li W, Ahmed Shifa T, Sun J, Jia C, Zhao Y, Cui Y. Hierarchical porous carbon foam supported on carbon cloth as high-performance anodes for aqueous supercapacitors. Journal of Power Sources, 2019, 439: 227066–227072

    Article  CAS  Google Scholar 

  35. Pu X, Zhao D, Fu C, Chen Z, Cao S, Wang C, Cao Y. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angewandte Chemie International Edition, 2021, 60(39): 21310–21318

    Article  CAS  PubMed  Google Scholar 

  36. Itagaki M, Suzuki S, Shitanda I, Watanabe K, Nakazawa H. Impedance analysis on electric double layer capacitor with transmission line model. Journal of Power Sources, 2007, 164(1): 415–424

    Article  CAS  Google Scholar 

  37. Lv X, Ji S, Linkov V, Wang X, Wang H, Wang R. Three-dimensional N-doped super-hydrophilic carbon electrodes with porosity tailored by Cu2O template-assisted electrochemical oxidation to improve the performance of electrical double-layer capacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(5): 2928–2936

    Article  CAS  Google Scholar 

  38. Bose N, Sundararajan V, Prasankumar T, Jose S P. α-MnO2 coated anion intercalated carbon nanowires: a high rate capability electrode material for supercapacitors. Materials Letters, 2020, 278: 128457–128468

    Article  CAS  Google Scholar 

  39. Mothkuri S, Gupta H, Jain P K, Rao T N, Padmanabham G, Chakrabarti S. Functionalized carbon nanotube and MnO2 nanoflower hybrid as an electrode material for supercapacitor application. Micromachines, 2021, 12(2): 213–228

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang J, Zhu T, Wang Y, Cui J, Sun J, Yan J, Qin Y, Zhang Y, Wu J, Tiwary C S, Ajayan P M, Wu Y. 3D carbon coated NiCo2S4 nanowires doped with nitrogen for electrochemical energy storage and conversion. Journal of Colloid and Interface Science, 2019, 556: 449–457

    Article  CAS  PubMed  Google Scholar 

  41. Guo X, Bai N, Tian Y, Gai L. Free-standing reduced graphene oxide/polypyrrole films with enhanced electrochemical performance for flexible supercapacitors. Journal of Power Sources, 2018, 408: 51–57

    Article  CAS  Google Scholar 

  42. Kim D K, Kim N D, Park S K, Seong K D, Hwang M, You N H, Piao Y. Nitrogen doped carbon derived from polyimide/multiwall carbon nanotube composites for high performance flexible all-solid-state supercapacitors. Journal of Power Sources, 2018, 380: 55–63

    Article  CAS  Google Scholar 

  43. Qin T, Dang S, Hao J, Wang Z, Li H, Wen Y, Lu S, He D, Cao G, Peng S. Carbon fabric supported 3D cobalt oxides/hydroxide nanosheet network as cathode for flexible all-solid-state asymmetric supercapacitor. Dalton Transactions, 2018, 47(33): 11503–11511

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Z, Xiao F, Xiao J, Wang S. Functionalized carbonaceous fibers for high performance flexible all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(22): 11817–11823

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Science Foundation of Shandong Province of China (Grant No. ZR2020MB024) for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Wang, H., Wang, X. et al. NiCo2O4@quinone-rich N-C core-shell nanowires as composite electrode for electric double layer capacitor. Front. Chem. Sci. Eng. 17, 373–386 (2023). https://doi.org/10.1007/s11705-022-2223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2223-6

Keywords

Navigation