Skip to main content
Log in

Optimizing iodine capture performance by metal-organic framework containing with bipyridine units

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Radioactive iodine exhibits medical values in radiology, but its excessive emissions can cause environmental pollution. Thus, the capture of radioiodine poses significant engineering for the environment and medical radiology. The adsorptive capture of radioactive iodine by metal—organic frameworks (MOFs) has risen to prominence. In this work, a Th-based MOF (denoted as Th-BPYDC) was structurally designed and synthesized, consisting of [Th63-O)43-OH)4(H2O)6]12+ clusters, abundant bipyridine units, and large cavities that allowed guest molecules diffusion and transmission. Th-BPYDC exhibited the uptake capacities of 2.23 g·g−1 and 312.18 mg·g−1 towards I2 vapor and I2 dissolved in cyclohexane, respectively, surpassing its corresponding analogue Th-UiO-67. The bipyridine units boosted the adsorption performance, and Th-BPYDC showed good reusability with high stability. Our work thus opened a new way for the synthesis of MOFs to capture radioactive iodine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamantiades A, Kessides I. Nuclear power for sustainable development: current status and future prospects. Energy Policy, 2009, 37(12): 5149–5166

    Article  Google Scholar 

  2. Mayer K, Wallenius M, Lutzenkirchen K, Horta J, Nicholl A, Rasmussen G, van Belle P, Varga Z, Buda R, Erdmann N, Kratz J V, Trautmann N, Fifield L K, Tims S G, Fröhlich M B, Steier P. Uranium from German nuclear power projects of the 1940s—a nuclear forensic investigation. Angewandte Chemie International Edition, 2015, 54(45): 13452–13456

    Article  CAS  PubMed  Google Scholar 

  3. Yang H, Liu X, Hao M, Xie Y, Wang X, Tian H, Waterhouse G I N, Kruger P E, Telfer S G, Ma S. Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Advanced Materials, 2021, 33(51): 2106621

    Article  CAS  Google Scholar 

  4. Cheng G, Zhang A, Zhao Z, Chai Z, Hu B, Han B, Ai Y, Wang X. Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Science Bulletin, 2021, 66(19): 1994–2001

    Article  CAS  PubMed  Google Scholar 

  5. Shen N, Yang Z, Liu S, Dai X, Xiao C, Taylor-Pashow K, Li D, Yang C, Li J, Zhang Y, Zhang M, Zhou R, Chai Z, Wang S. 99TcO4 removal from legacy defense nuclear waste by an alkaline-stable 2D cationic metal organic framework. Nature Communications, 2020, 11(1): 1–12

    Article  Google Scholar 

  6. Li J, Chen L, Shen N, Xie R, Sheridan M, Chen X, Sheng D, Zhang D, Chai Z, Wang S. Rational design of a cationic polymer network towards record high uptake of 99TcO4 in nuclear waste. Science China. Chemistry, 2021, 64(7): 1251–1260

    Article  CAS  Google Scholar 

  7. Li J, Li B, Shen N, Chen L, Guo Q, Chen L, He L, Dai X, Chai Z, Wang S. Task-specific tailored cationic polymeric network with high base-resistance for unprecedented 99TcO4 cleanup from alkaline nuclear waste. ACS Central Science, 2021, 7(8): 1441–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang J, Chen L, Dai X, Chen L, Zhai F, Yu W, Guo S, Yang L, Chen L, Zhang Y, He L, Chen C, Chai Z, Wang S. Efficient Sr-90 removal from highly alkaline solution by an ultrastable crystalline zirconium phosphonate. Chemical Communications, 2021, 57(68): 8452–8455

    Article  CAS  PubMed  Google Scholar 

  9. Hao M, Chen Z, Yang H, Waterhouse G I N, Ma S, Wang S. Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO4. Science Bulletin, 2022, 67(9): 924–932

    Article  CAS  PubMed  Google Scholar 

  10. He L, Chen L, Dong X, Zhang S, Zhang M, Dai X, Liu X, Lin P, Li K, Chen C, Pan T, Ma F, Chen J, Yuan M, Zhang Y, Chen L, Zhou R, Han Y, Chai Z, Wang S. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem, 2021, 7(3): 699–714

    Article  CAS  Google Scholar 

  11. Soelberg N R, Garn T G, Greenhalgh M R, Law J D, Jubin R, Strachan D M, Thallapally P K. Radioactive iodine and krypton control for nuclear fuel reprocessing facilities. Science and Technology of Nuclear Installations, 2013, 2013: 1–12

    Article  Google Scholar 

  12. Pryma D A, Mandel S J. Radioiodine therapy for thyroid cancer in the era of risk stratification and alternative targeted therapies. Journal of Nuclear Medicine, 2014, 55(9): 1485–1491

    Article  CAS  PubMed  Google Scholar 

  13. Liu X, Zhang A, Ma R, Wu B, Wen T, Ai Y, Sun M, Jin J, Wang S, Wang X. Experimental and theoretical insights into copper phthalocyanine-based covalent organic frameworks for highly efficient radioactive iodine capture. Chinese Chemical Letters, 2022, 33(7): 3549–3555

    Article  CAS  Google Scholar 

  14. Liu X, Pang H, Liu X, Li Q, Zhang N, Mao L, Qiu M, Hu B, Yang H, Wang X. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innovation, 2021, 2(1): 100076

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Xie W, Cui D, Zhang S R, Xu Y H, Jiang D L. Iodine capture in porous organic polymers and metal-organic frameworks materials. Materials Horizons, 2019, 6(8): 1571–1595

    Article  CAS  Google Scholar 

  16. Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504

    Article  CAS  PubMed  Google Scholar 

  17. Murray L J, Dincă M, Long J R. Hydrogen storage in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1294–1314

    Article  CAS  PubMed  Google Scholar 

  18. Xue D X, Wang Q, Bai J. Amide-functionalized metal—organic frameworks: syntheses, structures and improved gas storage and separation properties. Coordination Chemistry Reviews, 2019, 378: 2–16

    Article  CAS  Google Scholar 

  19. Dolgopolova E A, Rice A M, Martin C R, Shustova N B. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chemical Society Reviews, 2018, 47(13): 4710–4728

    Article  CAS  PubMed  Google Scholar 

  20. He C, Liu D, Lin W. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal—organic frameworks and nanoscale coordination polymers. Chemical Reviews, 2015, 115(19): 11079–11108

    Article  CAS  PubMed  Google Scholar 

  21. Drake T, Ji P, Lin W. Site isolation in metal—organic frameworks enable novel transition metal catalysis. Accounts of Chemical Research, 2018, 51(9): 2129–2138

    Article  CAS  PubMed  Google Scholar 

  22. Hao M, Qiu M, Yang H, Hu B, Wang X. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Science of the Total Environment, 2021, 760: 143333

    Article  CAS  PubMed  Google Scholar 

  23. Chen T, Yu K, Dong C, Yuan X, Gong X, Lian J, Cao X, Li M, Zhou L, Hu B, He R, Zhu W, Wang X. Advanced photocatalysts for uranium extraction: elaborate design and future perspectives. Coordination Chemistry Reviews, 2022, 467: 214615

    Article  CAS  Google Scholar 

  24. Cui Y, Yue Y, Qian G, Chen B. Luminescent functional metal—organic frameworks. Chemical Reviews, 2012, 112(2): 1126–1162

    Article  CAS  PubMed  Google Scholar 

  25. Yu S, Pang H, Huang S, Tang H, Wang S, Qiu M, Chen Z, Yang H, Song G, Fu D, Hu B, Wang X. Recent advances in metal—organic frameworks membranes for water treatment: a review. Science of the Total Environment, 2021, 800: 149662

    Article  CAS  PubMed  Google Scholar 

  26. Zhang S, Wang J, Zhang Y, Ma J, Huang L, Yu S, Chen L, Song G, Qiu M, Wang X. Applications of water-stable metal—organic frameworks in the removal of water pollutants: a review. Environmental Pollution, 2021, 291: 118076

    Article  CAS  PubMed  Google Scholar 

  27. Liu X, Xie Y, Hao M, Chen Z, Yang H, Waterhouse G I N, Ma S, Wang X K. Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst. Advanced Science, 2022, 9(23): 2201735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Z J, Ju Y, Yu B, Wu X, Lu H, Li Y, Zhou J, Guo X, Zhang Z H, Lin J, Wang J Q, Wang S. Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chemical Communications, 2020, 56(49): 6715–6718

    Article  CAS  PubMed  Google Scholar 

  29. Li Z J, Yue Z, Ju Y, Wu X, Ren Y, Wang S, Li Y, Zhang Z H, Guo X, Lin J, Wang J Q. Ultrastable thorium metal—organic frameworks for efficient iodine adsorption. Inorganic Chemistry, 2020, 59(7): 4435–4442

    Article  CAS  PubMed  Google Scholar 

  30. Sava D F, Chapman K W, Rodriguez M A, Greathouse J A, Crozier P S, Zhao H, Chupas P J, Nenoff T M. Competitive I2 sorption by Cu-BTC from humid gas streams. Chemistry of Materials, 2013, 25(13): 2591–2596

    Article  CAS  Google Scholar 

  31. Li B, Dong X, Wang H, Ma D, Tan K, Jensen S, Deibert B J, Butler J, Cure J, Shi Z, Thonhauser T, Chabal Y J, Han Y, Li J. Capture of organic iodides from nuclear waste by metal—organic framework-based molecular traps. Nature Communications, 2017, 8(1): 1–9

    Google Scholar 

  32. Zhang X, da Silva I, Godfrey H G W, Callear S K, Sapchenko S A, Cheng Y, Vitorica-Yrezabal I, Frogley M D, Cinque G, Tang C C, Giacobbe C, Dejoie C, Rudić S, Ramirez-Cuesta A J, Denecke M A, Yang S, Schröder M. Confinement of iodine molecules into triple-helical chains within robust metal—organic frameworks. Journal of the American Chemical Society, 2017, 139(45): 16289–16296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Valizadeh B, Nguyen T N, Smit B, Stylianou K C. Porous metal—organic framework@polymer beads for iodine capture and recovery using a gas-sparged column. Advanced Functional Materials, 2018, 28(30): 1801596

    Article  Google Scholar 

  34. Banerjee D, Chen X, Lobanov S S, Plonka A M, Chan X, Daly J A, Kim T, Thallapally P K, Parise J B. Iodine adsorption in metal organic frameworks in the presence of humidity. ACS Applied Materials & Interfaces, 2018, 10(13): 10622–10626

    Article  CAS  Google Scholar 

  35. Leloire M, Walshe C, Devaux P, Giovine R, Duval S, Bousquet T, Chibani S, Paul J F, Moissette A, Vezin H, Nerisson P, Cantrel L, Volkringer C, Loiseau T. Capture of gaseous iodine in isoreticular zirconium-based UiO-n metal—organic frameworks: influence of amino functionalization, DFT calculations, Raman and EPR spectroscopic investigation. Chemistry, 2022, 28(14): e202104437

    CAS  PubMed  Google Scholar 

  36. Hu Y Q, Li M Q, Wang Y, Zhang T, Liao P Q, Zheng Z, Chen X M, Zheng Y Z. Direct observation of confined I ⋯I2⋯I interactions in a metal-organic framework: iodine capture and sensing. Chemistry, 2017, 23(35): 8409–8413

    Article  CAS  PubMed  Google Scholar 

  37. Wang L, Li T, Dong X, Pang M, Xiao S, Zhang W. Thiophene-based MOFs for iodine capture: effect of pore structures and interaction mechanism. Chemical Engineering Journal, 2021, 425: 130578

    Article  CAS  Google Scholar 

  38. Ju Y, Li Z J, Lu H, Zhou Z, Li Y, Wu X L, Guo X, Qian Y, Zhang Z H, Lin J, Wang J Q, He M Y. Interpenetration control in thorium metal—organic frameworks: structural complexity toward iodine adsorption. Inorganic Chemistry, 2021, 60(8): 5617–5626

    Article  CAS  PubMed  Google Scholar 

  39. Munn A S, Millange F, Frigoli M, Guillou N, Falaise C, Stevenson V, Volkringer C, Loiseau T, Cibin G, Walton R I. Iodine sequestration by thiol-modified MIL-53 (Al). CrystEngComm, 2016, 18(41): 8108–8114

    Article  CAS  Google Scholar 

  40. Mehlana G, Ramon G, Bourne S A. A 4-fold interpenetrated diamondoid metal—organic framework with large channels exhibiting solvent sorption properties and high iodine capture. Microporous and Mesoporous Materials, 2016, 231: 21–30

    Article  CAS  Google Scholar 

  41. Jia M W, Li J T, Che S T, Kan L, Li G H, Liu Y L. Two CuxIy-based copper-organic frameworks with multiple secondary building units (SBUs): structure, gas adsorption and impressive ability of I2 sorption and release. Inorganic Chemistry Frontiers, 2019, 6(5): 1261–1266

    Article  CAS  Google Scholar 

  42. Xu T, Li J T, Jia M W, Li G H, Liu Y L. Contiguous layer-based metal—organic framework with conjugated π-electron ligand for high iodine capture. Dalton Transactions, 2021, 50(37): 13096–13102

    Article  CAS  PubMed  Google Scholar 

  43. Luo D, He Y, Tian J, Sessler J L, Chi X D. Reversible iodine capture by nonporous adaptive crystals of a bipyridine cage. Journal of the American Chemical Society, 2022, 144(1): 113–117

    Article  CAS  PubMed  Google Scholar 

  44. Hao M, Liu X, Liu X, Zhang J, Yang H, Waterhouse G I N, Wang X, Ma S. Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater. CCS Chemistry, 2022, 4: 2294–2307

    Article  CAS  Google Scholar 

  45. Falaise C, Volkringer C, Facqueur J, Bousquet T, Gasnot L, Loiseau T. Capture of iodine in highly stable metal—organic frameworks: a systematic study. Chemical Communications, 2013, 49(87): 10320–10322

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding support from the Science Challenge Project (Grant No. TZ2016004) and the Hunan Provincial Natural Science Foundation of China (Grant No. 2021JJ30565).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Feng Wang or Xiangke Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Liu, X., Liu, Y. et al. Optimizing iodine capture performance by metal-organic framework containing with bipyridine units. Front. Chem. Sci. Eng. 17, 395–403 (2023). https://doi.org/10.1007/s11705-022-2218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2218-3

Keywords

Navigation