Skip to main content
Log in

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Prussian blue and its analogs are extensively investigated as a cathode for ammonium-ion batteries. However, they often suffer from poor electronic conductivity. Here, we report a Ni2Fe(CN)6/multiwalled carbon nanotube composite electrode material, which is prepared using a simple coprecipitation approach. The obtained material consists of nanoparticles with sizes 30–50 nm and the multiwalled carbon nanotube embedded in it. The existence of multiwalled carbon nanotube ensures that the Ni2Fe(CN)6/multiwalled carbon nanotube composite shows excellent electrochemical performance, achieving a discharge capacity of 55.1 mAh·g–1 at 1 C and 43.2 mAh·g–1 even at 15 C. An increase in the ammonium-ion diffusion coefficient and ionic/electron conductivity based on kinetic investigations accounts for their high performance. Furthermore, detailed ex situ characterizations demonstrate that Ni2Fe(CN)6/multiwalled carbon nanotube composite offers three advantages: negligible lattice expansion during cycling, stable structure, and the reversible redox couple. Therefore, the Ni2Fe(CN)6/multiwalled carbon nanotube composite presents a long cycling life and high rate capacity. Finally, our study reports a desirable material for ammonium-ion batteries and provides a practical approach for improving the electrochemical performance of Prussian blue and its analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Y W, Xu J X, Li J, Yang Z W, Huang C C, Yu H X, Zhang L Y, Shu J. Pre-intercalation chemistry of electrode materials in aqueous energy storage systems. Coordination Chemistry Reviews, 2022, 460: 214477

    Article  CAS  Google Scholar 

  2. Yan H H, Zhang X K, Yang Z W, Xia M T, Xu C W, Liu Y W, Yu H X, Zhang L Y, Shu J. Insight into the electrolyte strategies for aqueous zinc ion batteries. Coordination Chemistry Reviews, 2022, 452: 214297

    Article  CAS  Google Scholar 

  3. Zhao H, Qi Y, Liang K, Li J, Zhou L, Chen J, Huang X, Ren Y. Interface-driven pseudocapacitance endowing sandwiched CoSe2/N-doped carbon/TiO2 microcubes with ultra-stable sodium storage and long-term cycling stability. ACS Applied Materials & Interfaces, 2021, 13(51): 61555–61564

    Article  CAS  Google Scholar 

  4. Yang Z, He J, Lai W H, Peng J, Liu X H, He X X, Guo X F, Li L, Qiao Y, Ma J M, Wu M, Chou S L. Fire-retardant, stable-cycling and high-safety sodium ion battery. Angewandte Chemie International Edition, 2021, 60(52): 27086–27094

    Article  CAS  PubMed  Google Scholar 

  5. Ma L, Cui H, Chen S, Li X, Dong B, Zhi C. Accommodating diverse ions in Prussian blue analogs frameworks for rechargeable batteries: the electrochemical redox reactions. Nano Energy, 2021, 81: 105632

    Article  CAS  Google Scholar 

  6. Xue Q, Li L, Huang Y, Huang R, Wu F, Chen R. Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating. ACS Applied Materials & Interfaces, 2019, 11(25): 22339–22345

    Article  CAS  Google Scholar 

  7. Xu C W, Yang Z W, Yan H H, Li J, Yu H X, Zhang L Y, Shu J. Synergistic dual conversion reactions assisting Pb-S electrochemistry for energy storage. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(12): e2118675119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yan H H, Yang Z W, Xu C W, Li J, Liu Y W, Zheng R T, Yu H X, Zhang L Y, Shu J. Controllable C-N site assisting observable potential difference for homogeneous copper deposition in aqueous Cu-S batteries. Energy Storage Materials, 2022, 48: 74–81

    Article  Google Scholar 

  9. Song Y, Pan Q, Lv H, Yang D, Qin Z, Zhang M Y, Sun X, Liu X X. Ammonium-ion storage using electrodeposited manganese oxides. Angewandte Chemie International Edition, 2021, 60(11): 5718–5722

    Article  CAS  PubMed  Google Scholar 

  10. Wu X, Qi Y, Hong J J, Li Z, Hernandez A S, Ji X. Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system. Angewandte Chemie International Edition, 2017, 56(42): 13026–13030

    Article  CAS  PubMed  Google Scholar 

  11. Dong S, Shin W, Jiang H, Wu X, Li Z, Holoubek J, Stickle W F, Key B, Liu C, Lu J, Greaney P A, Zhang X, Ji X. Ultra-fast NH4+ storage: strong H bonding between NH4+ and Bi-layered V2O5. Chem, 2019, 5(6): 1537–1551

    Article  CAS  Google Scholar 

  12. Liang G, Wang Y, Huang Z, Mo F, Li X, Yang Q, Wang D, Li H, Chen S, Zhi C. Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry. Advanced Materials, 2020, 32(14): 1907802

    Article  CAS  Google Scholar 

  13. Li C, Yan W, Liang S, Wang P, Wang J, Fu L, Zhu Y, Chen Y, Wu Y, Huang W. Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage. Nanoscale Horizons, 2019, 4(4): 991–998

    Article  CAS  Google Scholar 

  14. Holoubek J J, Jiang H, Leonard D, Qi Y, Bustamante G C, Ji X. Amorphous titanic acid electrode: its electrochemical storage of ammonium in a new water-in-salt electrolyte. Chemical Communications (Cambridge), 2018, 54(70): 9805–9808

    Article  CAS  Google Scholar 

  15. Li H, Yang J, Cheng J, He T, Wang B. Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life. Nano Energy, 2020, 68: 104369

    Article  CAS  Google Scholar 

  16. Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou S, Liu Y, Dou S. The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus Prussian blue analogs. Advanced Functional Materials, 2020, 30(14): 1909530

    Article  CAS  Google Scholar 

  17. Yang Z, Liu X, He X, Lai W, Li L, Qiao Y, Chou S, Wu M. Rechargeable sodium-based hybrid metal-ion batteries toward advanced energy storage. Advanced Functional Materials, 2021, 31(8): 2006457

    Article  CAS  Google Scholar 

  18. Wang W, Gang Y, Peng J, Hu Z, Yan Z, Lai W, Zhu Y, Appadoo D, Ye M, Cao Y, Gu Q-F, Liu H-K, Dou S-X, Chou S-L. Effect of eliminating water in Prussian blue cathode for sodium-ion batteries. Advanced Functional Materials, 2022, in press

  19. Wessells C D, Peddada S V, McDowell M T, Huggins R A, Cui Y. The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. Journal of the Electrochemical Society, 2012, 159(2): A98–A103

    Article  CAS  Google Scholar 

  20. Xing J, Fu X, Guan S, Zhang Y, Lei M, Peng Z. Novel K-V-Fe Prussian blue analogues nanocubes for high-performance aqueous ammonium ion batteries. Applied Surface Science, 2021, 543: 148843

    Article  CAS  Google Scholar 

  21. Zhang Q, Fu L, Luan J, Huang X, Tang Y, Xie H, Wang H. Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. Journal of Power Sources, 2018, 395: 305–313

    Article  CAS  Google Scholar 

  22. Wang Y, Chen R, Ang E H, Yan Y, Ding Y, Ke L, Luo Y, Rui K, Lin H, Zhu J. Carbonitridation pyrolysis synthesis of Prussian blue analog-derived carbon hybrids for lithium-ion batteries. Advanced Sustainable Systems, 2021, 5(12): 2100223

    Article  CAS  Google Scholar 

  23. Yao W, Xu J, Wang J, Luo J, Shi Q, Zhang Q. Chemically integrated multiwalled carbon nanotubes/zinc manganate nanocrystals as ultralong-life anode materials for lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2170–2177

    Article  CAS  Google Scholar 

  24. Yuan Y, Bin D, Dong X, Wang Y, Wang C, Xia Y. Intercalation pseudocapacitive nanoscale nickel hexacyanoferrate@carbon nanotubes as a high-rate cathode material for aqueous sodium-ion battery. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3655–3663

    Article  CAS  Google Scholar 

  25. Wu F, Chen J, Li L, Zhao T, Chen R. Improvement of rate and cycle performence by rapid polyaniline coating of a MWCNT/sulfur cathode. Journal of Physical Chemistry C, 2011, 115(49): 24411–24417

    Article  CAS  Google Scholar 

  26. Jiang P, Lei Z, Chen L, Shao X, Liang X, Zhang J, Wang Y, Zhang J, Liu Z, Feng J. Polyethylene glycol-Na+ interface of vanadium hexacyanoferrate cathode for highly stable rechargeable aqueous sodium-ion battery. ACS Applied Materials & Interfaces, 2019, 11(32): 28762–28768

    Article  CAS  Google Scholar 

  27. You Y, Wu X, Yin Y, Guo Y. A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1(45): 14061–14065

    Article  CAS  Google Scholar 

  28. You Y, Yu X, Yin Y, Nam K, Guo Y. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Research, 2015, 8(1): 117–128

    Article  CAS  Google Scholar 

  29. Ji Z, Han B, Liang H, Zhou C, Gao Q, Xia K, Wu J. On the mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for sodium-ion batteries. ACS Applied Materials & Interfaces, 2016, 8(49): 33619–33625

    Article  CAS  Google Scholar 

  30. Bulusheva L G, Okotrub A V, Kurenya A G, Zhang H, Zhang H, Chen X, Song H. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon, 2011, 49(12): 4013–4023

    Article  CAS  Google Scholar 

  31. Chen S, Yeoh W, Liu Q, Wang G. Chemical-free synthesis of graphene-carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries. Carbon, 2012, 50(12): 4557–4565

    Article  CAS  Google Scholar 

  32. Peng J, Wang J, Yi H, Hu W, Yu Y, Yin J, Shen Y, Liu Y, Luo J, Xu Y, Wei P, Li Y, Jin Y, Ding Y, Miao L, Jiang J, Han J, Huang Y. A dual-insertion type sodium-ion full cell based on high-quality ternary-metal Prussian blue analogs. Advanced Energy Materials, 2018, 8(11): 1702856

    Article  Google Scholar 

  33. Yu H, Xu J, Deng C, Xia M, Zhang X, Shu J, Wang Z. The nature of the ultrahigh initial Coulombic efficiency of Ni2Fe(CN)6 in aqueous ammonium-ion batteries. ACS Applied Energy Materials, 2021, 4(9): 9594–9599

    Article  CAS  Google Scholar 

  34. Tang K, Yu X, Sun J, Li H, Huang X. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochimica Acta, 2011, 56(13): 4869–4875

    Article  CAS  Google Scholar 

  35. Kim H, Cook J, Lin H, Ko J, Tolbert S, Ozolins V, Dunn B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nature Materials, 2017, 16(4): 454–460

    Article  CAS  PubMed  Google Scholar 

  36. Zheng R, Qian S, Cheng X, Yu H, Peng N, Liu T, Zhang J, Xia M, Zhu H, Shu J. FeNb11O29 nanotubes: superior electrochemical energy storage performance and operating mechanism. Nano Energy, 2019, 58: 399–409

    Article  CAS  Google Scholar 

  37. Liu N, Wu X, Fan L, Gong S, Guo Z, Chen A, Zhao C, Mao Y, Zhang N, Sun K. Intercalation pseudocapacitive Zn2+ storage with hydrated vanadium dioxide toward ultrahigh rate performance. Advanced Materials, 2020, 32(42): 1908420

    Article  CAS  Google Scholar 

  38. Huang C C, Liu Y W, Zheng R T, Yang Z W, Miao Z H, Zhang J W, Cai X H, Yu H X, Zhang L Y, Shu J. Interlayer gap widened TiS2 for highly efficient sodium-ion storage. Journal of Materials Science and Technology, 2022, 107: 64–69

    Article  Google Scholar 

  39. Zheng R T, Yu H X, Zhang X K, Ding Y, Xia M T, Cao K Z, Shu J, Vlad A, Su B L A. TiSe2-graphite dual ion battery: fast Na-ion insertion and excellent stability. Angewandte Chemie International Edition, 2021, 60(34): 18430–18437

    Article  CAS  PubMed  Google Scholar 

  40. Li W, Zhang F, Xiang X, Zhang X. Electrochemical properties and redox mechanism of Na2Ni0.4Co0.6[Fe(CN)6] nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries. Journal of Physical Chemistry C, 2017, 121(50): 27805–27812

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by NSAF joint Fund (Grant No. U1830106), National Natural Science Foundation of China (Grant No. U1632114), Science and Technology Innovation 2025 Major Program of Ningbo (Grant No. 2018B10061), and K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Shu or Zhen-Bo Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Fan, L., Deng, C. et al. Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage. Front. Chem. Sci. Eng. 17, 226–235 (2023). https://doi.org/10.1007/s11705-022-2198-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2198-3

Keywords

Navigation