Skip to main content
Log in

Reduction kinetics of SrFeO3−δ/CaO·MnO nanocomposite as effective oxygen carrier for chemical looping partial oxidation of methane

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Chemical looping reforming of methane is a novel and effective approach to convert methane to syngas, in which oxygen transfer is achieved by a redox material. Although lots of efforts have been made to develop high-performance redox materials, a few studies have focused on the redox kinetics. In this work, the kinetics of SrFeO3−δ−CaO·MnO nanocomposite reduction by methane was investigated both on a thermo-gravimetric analyzer and in a packed-bed microreactor. During the methane reduction, combustion occurs before the partial oxidation and there exists a transition between them. The weight loss due to combustion increases, but the transition region becomes less inconspicuous as the reduction temperature increased. The weight loss associated with the partial oxidation is much larger than that with combustion. The rate of weight loss related to the partial oxidation is well fitted by the Avrami—Erofeyev equation with n = 3 (A3 model) with an activation energy of 59.8 kJ·mol−1. The rate law for the partial oxidation includes a solid conversion term whose expression is given by the A3 model and a methane pressure-dependent term represented by a power law. The partial oxidation is half order with respect to methane pressure. The proposed rate law could well predict the reduction kinetics; thus, it may be used to design and/or analyze a chemical looping reforming reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caballero A, Pérez P J. Methane as raw material in synthetic chemistry: the final frontier. Chemical Society Reviews, 2013, 42(23): 8809–8820

    Article  CAS  Google Scholar 

  2. Sun L, Wang Y, Guan N, Li L. Methane activation and utilization: current status and future challenges. Energy Technology, 2020, 8(8): 1900826

    Article  CAS  Google Scholar 

  3. Song H, Meng X, Wang Z J, Liu H, Ye J. Solar-energy-mediated methane conversion. Joule, 2019, 3(7): 1606–1636

    Article  CAS  Google Scholar 

  4. Olivos-Suarez A I, Szécsényi À, Hensen E J M, Ruiz-Martinez J, Pidko E A, Gascon J. Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: challenges and opportunities. Chemical Reviews, 2016, 6(5): 2965–2981

    CAS  Google Scholar 

  5. Schwach P, Pan X, Bao X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chemical Reviews, 2017, 117(13): 8497–8520

    Article  CAS  Google Scholar 

  6. Li X, Pei C, Gong J. Shale gas revolution: catalytic conversion of C1—C3 light alkanes to value-added chemicals. Chem, 2021, 7(7): 1755–1801

    Article  CAS  Google Scholar 

  7. Mistré M, Crénes M, Hafner M. Shale gas production costs: historical developments and outlook. Energy Strategy Reviews, 2018, 20: 20–25

    Article  Google Scholar 

  8. Tang P, Zhu Q, Wu Z, Ma D. Methane activation: the past and future. Energy & Environmental Science, 2014, 7(8): 2580–2591

    Article  CAS  Google Scholar 

  9. Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science, 2014, 344(6183): 616–619

    Article  CAS  Google Scholar 

  10. Liu Y, Deng D, Bao X. Catalysis for selected C1 chemistry. Chem, 2020, 6(10): 2497–2514

    Article  CAS  Google Scholar 

  11. Sushkevich V L, Palagin D, Ranocchiari M, van Bokhoven J A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science, 2017, 356(6337): 523–527

    Article  CAS  Google Scholar 

  12. Haribal V P, Wang X J, Dudek R, Paulus C, Turk B, Gupta R, Li F. Modified ceria for “low-temperature” CO2 utilization: a chemical looping route to exploit industrial waste heat. Advanced Energy Materials, 2019, 9(41): 1901963

    Article  CAS  Google Scholar 

  13. Lin T, Yu F, An Y, Qin T, Li L, Gong K, Zhong L, Sun Y. Cobalt carbide nanocatalysts for efficient syngas conversion to value-added chemicals with high selectivity. Accounts of Chemical Research, 2021, 54(8): 1961–1971

    Article  CAS  Google Scholar 

  14. Liu H, Li Y, He D. Recent progress of catalyst design for carbon dioxide reforming of methane to syngas. Energy Technology (Weinheim), 2020, 8(8): 1900493

    Article  CAS  Google Scholar 

  15. Yu W, Wang X, Liu Y, Wei J, Zhang J. Effect of composition on the redox performance of strontium ferrite nanocomposite. Energy & Fuels, 2020, 34(7): 8644–8652

    Article  CAS  Google Scholar 

  16. Damma D, Smirniotis P G. Recent advances in the direct conversion of syngas to oxygenates. Catalysis Science & Technology, 2021, 11(16): 5412–5431

    Article  CAS  Google Scholar 

  17. Zhu Z, Guo W, Zhang Y, Pan C, Xu J, Zhu Y, Lou Y. Research progress on methane conversion coupling photocatalysis and thermocatalysis. Carbon Energy, 2021, 3(4): 519–540

    Article  CAS  Google Scholar 

  18. Niu J, Guo F, Ran J, Qi W, Yang Z. Methane dry (CO2) reforming to syngas (H2/CO) in catalytic process: from experimental study and DFT calculations. International Journal of Hydrogen Energy, 2020, 45(55): 30267–30287

    Article  CAS  Google Scholar 

  19. Zhang R, Cao Y, Li H, Zhao Z, Zhao K, Jiang L. The role of CuO modified La0.7Sr0.3 FeO3 perovskite on intermediate-temperature partial oxidation of methane via chemical looping scheme. International Journal of Hydrogen Energy, 2020, 45(7): 4073–4083

    Article  CAS  Google Scholar 

  20. Zhu X, Imtiaz Q, Donat F, Müller C R, Li F. Chemical looping beyond combustion—a perspective. Energy & Environmental Science, 2020, 13(3): 772–804

    Article  CAS  Google Scholar 

  21. Zeng L, Cheng Z, Fan J A, Fan L S, Gong J. Metal oxide redox chemistry for chemical looping processes. Nature Reviews. Chemistry, 2018, 2(11): 349–364

    CAS  Google Scholar 

  22. Zheng Y, Li K, Wang H, Tian D, Wang Y, Zhu X, Wei Y, Zheng M, Luo Y. Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane. Applied Catalysis B: Environmental, 2017, 202: 51–63

    Article  CAS  Google Scholar 

  23. Zhu H, Zhang P, Dai S. Recent advances of lanthanum-based perovskite oxides for catalysis. ACS Catalysis, 2015, 5(11): 6370–6385

    Article  CAS  Google Scholar 

  24. Wang X, Krzystowczyk E, Dou J, Li F. Net electronic charge as an effective electronic descriptor for oxygen release and transport properties of SrFeO3-based oxygen sorbents. Chemistry of Materials, 2021, 33(7): 2446–2456

    Article  CAS  Google Scholar 

  25. Sedykh V D, Rybchenko O G, Suvorov E V, Ivanov A I, Kulakov V I. Oxygen vacancies and valence states of iron in SrFeO3−δ compounds. Physics of the Solid State, 2020, 62(10): 1916–1923

    Article  CAS  Google Scholar 

  26. Ji K, Dai H, Dai J, Deng J, Wang F, Zhang H, Zhang L. PMMA-templating preparation and catalytic activities of three-dimensional macroporous strontium ferrites with high surface areas for toluene combustion. Catalysis Today, 2013, 201: 40–48

    Article  CAS  Google Scholar 

  27. Yang J, Li L, Yang X, Song S, Li J, Jing F, Chu W. Enhanced catalytic performances of in situ-assembled LaMnO3/δ-MnO2 hetero-structures for toluene combustion. Catalysis Today, 2019, 327: 19–27

    Article  CAS  Google Scholar 

  28. Chen J, Buchanan T, Walker E A, Toops T J, Li Z, Kunal P, Kyriakidou E A. Mechanistic understanding of methane combustion over Ni/CeO2: a combined experimental and theoretical approach. ACS Catalysis, 2021, 11(15): 9345–9354

    Article  CAS  Google Scholar 

  29. Zhang J S, Haribal V, Li F X. Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme. Science Advances, 2017, 3(8): e1701184

    Article  Google Scholar 

  30. Wang X H, Du X C, Yu W B, Zhang J S, Wei J J. Coproduction of hydrogen and methanol from methane by chemical looping reforming. Industrial & Engineering Chemistry Research, 2019, 58(24): 10296–10306

    Article  CAS  Google Scholar 

  31. Khawam A, Flanagan D R. Solid-state kinetic models: basics and mathematical fundamentals. Journal of Physical Chemistry B, 2006, 110(35): 17315–17328

    Article  CAS  Google Scholar 

  32. Li G, Lv X, Ding C, Zhou X, Zhong D, Qiu G. Non-isothermal carbothermic reduction kinetics of calcium ferrite and hematite as oxygen carriers for chemical looping gasification applications. Applied Energy, 2020, 262: 114604

    Article  CAS  Google Scholar 

  33. Tian Y, Dudek R B, Westmoreland P R, Li F. Effect of sodium tungstate promoter on the reduction kinetics of CaMn0.9Fe0.1O3 for chemical looping-oxidative dehydrogenation of ethane. Chemical Engineering Journal, 2020, 398: 125583

    Article  CAS  Google Scholar 

  34. Zhao K, Zheng A, Li H, He F, Huang Z, Wei G, Shen Y, Zhao Z. Exploration of the mechanism of chemical looping steam methane reforming using double perovskite-type oxides La1.6Sr0.4FeCoO6. Applied Catalysis B: Environmental, 2017, 219: 672–682

    Article  CAS  Google Scholar 

  35. Zhao K, Li L, Zheng A, Huang Z, He F, Shen Y, Wei G, Li H, Zhao Z. Synergistic improvements in stability and performance of the double perovskite-type oxides La2−xSrxFeCoO6 for chemical looping steam methane reforming. Applied Energy, 2017, 197: 393–404

    Article  CAS  Google Scholar 

  36. Tang M, Xu L, Fan M. Progress in oxygen carrier development of methane-based chemical-looping reforming: a review. Applied Energy, 2015, 151: 143–156

    Article  CAS  Google Scholar 

  37. Gao Y, Neal L M, Li F. Li-promoted LaxSr2−xFeO4−δ core-shell redox catalysts for oxidative dehydrogenation of ethane under a cyclic redox scheme. ACS Catalysis, 2016, 6(11): 7293–7302

    Article  CAS  Google Scholar 

  38. Cheng F, Dupont V, Twigg M V. Direct reduction of nickel catalyst with model bio-compounds. Applied Catalysis B: Environmental, 2017, 200: 121–132

    Article  CAS  Google Scholar 

  39. Fedunik-Hofman L, Bayon A, Donne S W. Kinetics of solid—gas reactions and their application to carbonate looping systems. Energies, 2019, 12(15): 2981

    Article  CAS  Google Scholar 

  40. Fogler H S. Elements of Chemical Reaction Engineering. 5th ed. New York: Pearson Education Inc., 2016

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21978230) and Shaanxi Creative Talents Promotion Plan—Technological Innovation Team (Grant No. 2019TD-039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junshe Zhang or Jinjia Wei.

Electronic Supplementary Material

11705_2022_2188_MOESM1_ESM.pdf

Reduction kinetics of SrFeO3−δ/CaO·MnO nanocomposite as effective oxygen carrier for chemical looping partial oxidation of methane

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yang, L., Ji, X. et al. Reduction kinetics of SrFeO3−δ/CaO·MnO nanocomposite as effective oxygen carrier for chemical looping partial oxidation of methane. Front. Chem. Sci. Eng. 16, 1726–1734 (2022). https://doi.org/10.1007/s11705-022-2188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2188-5

Keywords

Navigation