Skip to main content
Log in

Formation of CaCO3 hollow microspheres in carbonated distiller waste from Solvay soda ash plants

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

For decades, distiller waste and CO2 were not the first choice for production of high valued products. Here, CaCO3 hollow microspheres, a high-value product was synthesized from such a reaction system. The synthetic methods, the formation mechanism and operational cost were discussed. When 2.5 L·min−1·L−1 CO2 was flowed into distiller waste (pH = 11.4), spheres with 4–13 diameters and about 2 shell thickness were obtained. It is found that there is a transformation of CaCO3 particles from solid-cubic nuclei to hollow spheres. Firstly, the Ca(OH)2 in the distiller waste stimulated the nucleation of calcite with a non-template effect and further maintained the calcite form and prevented the formation of vaterite. Therefore, in absence of auxiliaries, the formation of hollow structures mainly depended on the growth and aging of CaCO3. Studies on the crystal morphology and its changes during the growth process point to the inside-out Ostwald effect in the formation of hollow spheres. Change in chemical properties of the bulk solution caused changes in interfacial tension and interfacial energy, which promoted the morphological transformation of CaCO3 particles from cubic calcite to spherical clusters. Finally, the flow process for absorption of CO2 by distiller waste was designed and found profitable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

X V :

the molar fractions of vaterite

X C :

the molar fractions of calcite

I c 104 :

crystal plane peak intensities of calcite

I v 110 :

110 crystal plane peak intensities of vaterite

\({V_{{\rm{C}}{{\rm{O}}_2}}}\) :

the total amount of CO2 consumed during the carbonation reaction for 1 h, L

V :

the volume of solution, L

V m :

the standard molar volume of a gas, L·mol−1

\({n_{{\rm{Ca}}{{\left( {{\rm{OH}}} \right)}_2}}}\) :

the amount of insoluble Ca(OH)2 reacted part at time t (negligible), mol

M:

molecular weight of Ca(OH)2, g·mol−1

n :

the amount of undissolved Ca(OH)2, mol

\({c_{{\rm{Ca}}_0^{2 + }}}\) :

the initial concentration of Ca2+ in the solution, mol·L−1

\({c_{{\rm{Ca}}_t^{2 + }}}\) :

the concentration of Ca2+ in the solution at time t, mol·L−1

\({c_{{\rm{C}}{{\rm{a}}^{2 + }}}}\) :

the concentration of Ca2+, mol·L−1

\({c_{{\rm{O}}{{\rm{H}}^ - }}}\) :

the concentration of OH, mol·L−1

J :

the activity products

K :

solubility product constant of Ca(OH)2, K = 5.6 × 10−6 (25 °C)

\({\gamma _{{\rm{C}}{{\rm{a}}^{2 + }}}}\) :

the activity coefficients of Ca2+

\({\gamma _{{\rm{O}}{{\rm{H}}^ - }}}\) :

the activity coefficients of OH

\({\alpha _{{\rm{C}}{{\rm{a}}^{2 + }}}}\) :

activity of Ca2+ in solution, mol·L−1

\({\alpha _{{\rm{O}}{{\rm{H}}^ - }}}\) :

activity of OH in solution, mol·L−1

θ :

contact angle between calcite and liquid, (°)

γ ls :

solid-liquid interfacial tension, mN·m−1

γ lg :

liquid-vapor interfacial tension, mN·m−1

γ sg :

solid-vapor interfacial tension, mN·m−1, γsg= 43.5 mN·m−1

\({c_{{\rm{Ca}}_{20\min }^{2 + }}}\) :

the concentration of Ca2+ in the system reacted for 20 min, mol·L−1

Y :

the output of CaCO3 hollow microspheres, kg T cycle times of carbonation of distiller waste

V′ :

the volume of distiller waste, L

M′ :

the molecular weight of CaCO3, g·mol−1

References

  1. Trypuc M, Bialowicz K. CaCO3 production using liquid waste from Solvay method. Journal of Cleaner Production, 2011, 19(6–7): 751–756

    Article  CAS  Google Scholar 

  2. Calban T, Kavci E. Removal of calcium from soda liquid waste containing calcium chloride. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2010, 32(5): 407–418

    Article  CAS  Google Scholar 

  3. Sun B C, Wang X M, Chen J M, Chu G W, Chen J F, Shao L. Synthesis of nano-CaCO3 by simultaneous absorption of CO2 and NH3 into CaCl2 solution in a rotating packed bed. Chemical Engineering Journal, 2011, 168(2): 731–736

    Article  CAS  Google Scholar 

  4. Gao C Z, Dong Y, Zhang H J, Zhang J M. Utilization of distiller waste and residual mother liquor to prepare precipitated calcium carbonate. Journal of Cleaner Production, 2007, 15(15): 1419–1425

    Article  Google Scholar 

  5. Zhang X, Asselin E, Li Z. CaCO3 precipitation kinetics in the system CaCl2−CO2−Mg(OH)2−H2O for comprehensive utilization of soda production wastes. ACS Sustainable Chemistry & Engineering, 2020, 9(1): 398–410

    Article  Google Scholar 

  6. Luo X P, Song X W, Cao Y W, Song L, Bu X Z. Investigation of calcium carbonate synthesized by steamed ammonia liquid waste without use of additives. RSC Advances, 2020, 10(13): 7976–7986

    Article  CAS  Google Scholar 

  7. Dong C, Song X, Li Y, Liu C, Chen H, Yu J. Impurity ions effect on CO2 mineralization via coupled reaction-extraction-crystallization process of CaCl2 waste liquids. Journal of CO2 Utilization, 2018, 27: 115–128

    Article  CAS  Google Scholar 

  8. Song X W, Liu H, Wang J F, Cao Y W, Luo X P. A study of the effects of NH4+ on the fast precipitation of vaterite CaCO3 formed from steamed ammonia liquid waste and K2CO3/Na2CO3. CrystEngComm, 2021, 23(24): 4284–4300

    Article  CAS  Google Scholar 

  9. Yan Z, Wang Y, Yue H, Liu C, Zhong S, Ma K, Liao W, Tang S, Liang B. Integrated process of monoethanolamine-based CO2 absorption and CO2 mineralization with SFGD slag: process simulation and life-cycle assessment of CO2 emission. ACS Sustainable Chemistry & Engineering, 2021, 9(24): 8238–8248

    Article  CAS  Google Scholar 

  10. Alamdari A, Alamdari A, Mowla D. Kinetics of calcium carbonate precipitation through CO2 absorption from flue gas into distiller waste of soda ash plant. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3480–3486

    Article  CAS  Google Scholar 

  11. Li Y, Song X, Chen G, Sun Z, Xu Y, Yu J. Preparation of calcium carbonate and hydrogen chloride from distiller waste based on reactive extraction-crystallization process. Chemical Engineering Journal, 2015, 278: 55–61

    Article  CAS  Google Scholar 

  12. Sha F, Zhu N, Bai Y J, Li Q, Guo B, Zhao T X, Zhang F, Zhang J B. Controllable synthesis of various CaCO3 morphologies based on a CCUS idea. ACS Sustainable Chemistry & Engineering, 2016, 4(6): 3032–3044

    Article  CAS  Google Scholar 

  13. Ma Y, Feng Q, Bourrat X. A novel growth process of calcium carbonate crystals in silk fibroin hydrogel system. Materials Science and Engineering C, 2013, 33(4): 2413–2420

    Article  CAS  Google Scholar 

  14. Zheng T W, Zhang X, Yi H H. Spherical vaterite microspheres of calcium carbonate synthesized with poly(acrylic acid) and sodium dodecyl benzene sulfonate. Journal of Crystal Growth, 2019, 528(15): 125275

    Article  Google Scholar 

  15. Chen H G, Leng S L. Rapid synthesis of hollow nano-structured hydroxyapatite rnicrospheres via microwave transformation method using hollow CaCO3 precursor microspheres. Ceramics International, 2015, 41(2): 2209–2213

    Article  CAS  Google Scholar 

  16. Zheng T W, Yi H H, Zhang S Y, Wang C G. Preparation and formation mechanism of calcium carbonate hollow microspheres. Journal of Crystal Growth, 2020, 549: 125870

    Article  CAS  Google Scholar 

  17. Wang J, Chen J S, Zong J Y, Zhao D, Li F, Zhuo R X, Cheng S X. Calcium carbonate/carboxymethyl chitosan hybrid microspheres and nanospheres for drug delivery. Journal of Physical Chemistry C, 2010, 114(44): 18940–18945

    Article  CAS  Google Scholar 

  18. Park R J, Meldrum F C. Synthesis of single crystals of calcite with complex morphologies. Advanced Materials, 2002, 14(16): 1167–1169

    Article  CAS  Google Scholar 

  19. Kim S, Ko J W, Park C B. Bio-inspired mineralization of CO2 gas to hollow CaCO3 microspheres and bone hydroxyapatite/polymer composites. Journal of Materials Chemistry, 2011, 21(30): 11070–11073

    Article  CAS  Google Scholar 

  20. Yan G W, Huang J H, Zhang J F, Qian C J. Aggregation of hollow CaCO3 spheres by calcite nanoflakes. Materials Research Bulletin, 2008, 43(8–9): 2069–2077

    Article  CAS  Google Scholar 

  21. Hadiko G, Han Y S, Fuji M, Takahashi M. Synthesis of hollow calcium carbonate particles by the bubble templating method. Materials Letters, 2005, 59(19–20): 2519–2522

    Article  CAS  Google Scholar 

  22. Tomioka T, Fuji M, Takahashi M, Takai C, Utsuno M. Hollow structure formation mechanism of calcium carbonate particles synthesized by the CO2 bubbling method. Crystal Growth & Design, 2012, 12(2): 771–776

    Article  CAS  Google Scholar 

  23. Yan P, Guo Y P, Xu Z, Wang Z C. Influence of surfactant-polymer complexes on crystallization and aggregation of CaCO3. Chemical Research in Chinese Universities, 2012, 28(4): 737–742

    Google Scholar 

  24. Watanabe H, Mizuno Y, Endo T, Wang X W, Fuji M, Takahashi M. Effect of initial pH on formation of hollow calcium carbonate particles by continuous CO2 gas bubbling into CaCl2 aqueous solution. Advanced Powder Technology, 2009, 20(1): 89–93

    Article  CAS  Google Scholar 

  25. Chen J, Xiang L. Controllable synthesis of calcium carbonate polymorphs at different temperatures. Powder Technology, 2009, 189(1): 64–69

    Article  CAS  Google Scholar 

  26. Wang B, Pan Z H, Du Z P, Cheng H G, Cheng F Q. Effect of impure components in flue gas desulfurization (FGD) gypsum on the generation of polymorph CaCO3 during carbonation reaction. Journal of Hazardous Materials, 2019, 369: 236–243

    Article  CAS  Google Scholar 

  27. Li E Z, Lu Y, Cheng F Q, Wang X M, Miller J D. Effect of oxidation on the wetting of coal surfaces by water: experimental and molecular dynamics simulation studies. Physicochemical Problems of Mineral Processing, 2018, 54(4): 1039–1051

    CAS  Google Scholar 

  28. Marcolli C. Technical note: fundamental aspects of ice nucleation via pore condensation and freezing including Laplace pressure and growth into macroscopic ice. Atmospheric Chemistry and Physics, 2020, 20(5): 3209–3230

    Article  CAS  Google Scholar 

  29. Cheng H G, Wang X, Wang B, Zhao J, Liu Y, Cheng F Q. Effect of ultrasound on the morphology of the CaCO3 precipitated from CaSO4−NH3−CO2−H2O system. Journal of Crystal Growth, 2017, 469: 97–105

    Article  CAS  Google Scholar 

  30. Chen Q J, Ding W J, Sun H J, Peng T J, Ma G H. Utilization of phosphogypsum to prepare high-purity CaCO3 in the NH4Cl−NH4OH−CO2 system. ACS Sustainable Chemistry & Engineering, 2020, 8(31): 11649–11657

    Article  Google Scholar 

  31. Cheng H G, Zhang X X, Song H P. Morphological investigation of calcium carbonate during ammonification-carbonization process of low concentration calcium solution. Journal of Nanomaterials, 2014, 2014: 1–7

    Google Scholar 

  32. Nesbitt H W. Activity coefficients of ions in alkali and alkalineearth chloride dominated waters including seawater. Chemical Geology, 1984, 43(1–2): 127–142

    Article  CAS  Google Scholar 

  33. Fanghänel T, Neck V, Kim J I. The ion product of H2O, dissociation constants of H2CO3 and Pitzer parameters in the system Na+/H+/OH/HCO3/CO32−/ClO4/H2O at 25 °C. Journal of Solution Chemistry, 1996, 25(4): 327–343

    Article  Google Scholar 

  34. Dean J A. Lang’s Handbook of Chemistry. New York: The Kingsport Press, 1985: 5–8

    Google Scholar 

  35. Li B, Zeng H C. Architecture and preparation of hollow catalytic devices. Advanced Materials, 2019, 31(38): 1801104

    Article  Google Scholar 

  36. Yang X, Fu J, Jin C, Chen J, Liang C, Wu M, Zhou W. Formation mechanism of CaTiO3 hollow crystals with different microstructures. Journal of the American Chemical Society, 2010, 132(40): 14279–14287

    Article  CAS  Google Scholar 

  37. Ding W, Hu L, Sheng Z, Dai J, Zhu X, Tang X, Hui Z, Sun Y. Magneto-acceleration of Ostwald ripening in hollow Fe3O4 nanospheres. CrystEngComm, 2016, 18(33): 6134–6137

    Article  CAS  Google Scholar 

  38. Weng W, Lin J, Du Y, Ge X, Zhou X, Bao J. Template-free synthesis of metal oxide hollow micro-/nanospheres via Ostwald ripening for lithium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(22): 10168–10175

    Article  CAS  Google Scholar 

  39. Zhao W, Zhang C, Geng F, Zhuo S, Zhang B. Nanoporous hollow transition metal chalcogenide nanosheets synthesized via the anion-exchange reaction of metal hydroxides with chalcogenide ions. ACS Nano, 2014, 8(10): 10909–10919

    Article  CAS  Google Scholar 

  40. Yin Y D, Rioux R M, Erdonmez C K, Hughes S, Somorjai G A, Alivisatos A P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science, 2004, 304(5671): 711–714

    Article  CAS  Google Scholar 

  41. Fan H J, Gösele U, Zacharias M. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small, 2007, 3(10): 1660–1671

    Article  CAS  Google Scholar 

  42. Fan H J, Knez M, Scholz R, Nielsch K, Pippel E, Hesse D, Zacharias M, Gösele U. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nature Materials, 2006, 5(8): 627–631

    Article  CAS  Google Scholar 

  43. Gao J N, Li Q S, Zhao H B, Li L S, Liu C L, Gong Q H, Qi L M. One-pot synthesis of uniform Cu2O and CuS hollow spheres and their optical limiting properties. Chemistry of Materials, 2008, 20(19): 6263–6269

    Article  CAS  Google Scholar 

  44. Gayevskii V R, Kochmarskii V Z, Gayevska S G. Nucleation and crystal growth of calcium sulfate dihydrate from aqueous solutions: speciation of solution components, kinetics of growth, and interfacial tension. Journal of Crystal Growth, 2020, 548: 125844

    Article  CAS  Google Scholar 

  45. Keller K S, Olsson M H, Yang M, Stipp S L. Adsorption of ethanol and water on calcite: dependence on surface geometry and effect on surface behavior. Langmuir, 2015, 31(13): 3847–3853

    Article  CAS  Google Scholar 

  46. Gao Z, Li C, Sun W, Hu Y. Anisotropic surface properties of calcite: a consideration of surface broken bonds. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2017, 520: 53–61

    Article  CAS  Google Scholar 

  47. Tabar M A, Shafiei Y, Shayesteh M, Monfared A D, Ghazanfari M H. Wettability alteration of calcite rock from gas-repellent to gas-wet using a fluorinated nanofluid: a surface analysis study. Journal of Natural Gas Science and Engineering, 2020, 83: 103613

    Article  Google Scholar 

  48. Ulusoy U, Hiçyılmaz C, Yekeler M. Role of shape properties of calcite and barite particles on apparent hydrophobicity. Chemical Engineering and Processing, 2004, 43(8): 1047–1053

    Article  CAS  Google Scholar 

  49. Chen Z Q. Colloid and Interface Chemistry. Peking: Higher Education Press, 2001, 95–104 (In Chinese)

    Google Scholar 

  50. Tyson W R, Miller W A. Surface free energies of solid metals: estimation from liquid surface tension measurements. Surface Science, 1977, 62(1): 267–276

    Article  CAS  Google Scholar 

  51. Pan S Y, Chang E E, Chiang P C, Chiang P C. CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol and Air Quality Research, 2012, 12(5): 770–791

    Article  CAS  Google Scholar 

  52. Ruan J J, Huang J X, Dong L P, Huang Z. Environmentally friendly technology of recovering nickel resources and producing nano-Al2O3 from waste metal film resistors. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8234–8240

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. U20A20149, 21878180 and 21908137) and the Graduate Education Project of Shanxi Province (NO. 2021Y139).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaigang Cheng or Fangqin Cheng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Cheng, H., Li, E. et al. Formation of CaCO3 hollow microspheres in carbonated distiller waste from Solvay soda ash plants. Front. Chem. Sci. Eng. 16, 1659–1671 (2022). https://doi.org/10.1007/s11705-022-2173-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2173-z

Keywords

Navigation