Skip to main content
Log in

Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for C-C coupling and electrocatalytic application

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The current work describes the synthesis of a new bio-waste derived cellulosic-carbon supported-palladium nanoparticles enriched magnetic nanocatalyst (Pd/Fe3O4@C) using a simple multi-step process under aerobic conditions. Under mild reaction conditions, the Pd/Fe3O4@C magnetic nanocatalyst demonstrated excellent catalytic activity in the Hiyama cross-coupling reaction for a variety of substrates. Also, the Pd/Fe3O4@C magnetic nanocatalyst exhibited excellent catalytic activity up to five recycles without significant catalytic activity loss in the Hiyama cross-coupling reaction. Also, we explored the use of Pd/Fe3O4@C magnetic nanocatalyst as an electrocatalyst for hydrogen evolution reaction. Interestingly, the Pd/Fe3O4@C magnetic nanocatalyst exhibited better electrochemical activity compared to bare carbon and magnetite (Fe3O4 nanoparticles) with an overpotential of 293 mV at a current density of 10 mA·cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. García-Serna J, Pérez-Barrigón L, Cocero M. New trends for design towards sustainability in chemical engineering: green engineering. Chemical Engineering Journal, 2007, 133(1–3): 7–30

    Article  Google Scholar 

  2. Centi G, Ciambelli P, Perathoner S, Russo P. Environmental catalysis: trends and outlook. Catalysis Today, 2002, 75(1–4): 3–15

    Article  CAS  Google Scholar 

  3. Clarke C J, Tu W C, Levers O, Brohl A, Hallett J P. Green and sustainable solvents in chemical processes. Chemical Reviews, 2018, 118(2): 747–800

    Article  CAS  PubMed  Google Scholar 

  4. Descorme C, Gallezot P, Geantet C, George C. Heterogeneous catalysis: a key tool toward sustainability. ChemCatChem, 2012, 4(12): 1897–1906

    Article  CAS  Google Scholar 

  5. Di Monte R, Kašpar J. Heterogeneous environmental catalysis—a gentle art: CeO2-ZrO2 mixed oxides as a case history. Catalysis Today, 2005, 100(1–2): 27–35

    Article  CAS  Google Scholar 

  6. Beletskaya I, Tyurin V. Recyclable nanostructured catalytic systems in modern environmentally friendly organic synthesis. Molecules, 2010, 15(7): 4792–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Polshettiwar V, Varma R S. Green chemistry by nano-catalysis. Green Chemistry, 2010, 12(5): 743–754

    Article  CAS  Google Scholar 

  8. Beletskaya I P, Kustov L M. Catalysis as an important tool of green chemistry. Russian Chemical Reviews, 2010, 79(6): 441–461

    Article  CAS  Google Scholar 

  9. Rodriguez-Reinoso F. The role of carbon materials in heterogeneous catalysis. Carbon, 1998, 36(3): 159–175

    Article  CAS  Google Scholar 

  10. Antolini E. Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009, 88(1–2): 1–24

    CAS  Google Scholar 

  11. Julkapli N M, Bagheri S. Graphene supported heterogeneous catalysts: an overview. International Journal of Hydrogen Energy, 2015, 40(2): 948–979

    Article  CAS  Google Scholar 

  12. Houghton R, Hall F, Goetz S J. Importance of biomass in the global carbon cycle. Journal of Geophysical Research. Biogeosciences, 2009, 114(G2): 1–13

    Google Scholar 

  13. Bhuvaneshwari S, Hettiarachchi H, Meegoda J N. Crop residue burning in India: policy challenges and potential solutions. International Journal of Environmental Research and Public Health, 2019, 16(5): 832

    Article  CAS  PubMed Central  Google Scholar 

  14. Lim J S, Manan Z A, Alwi S R W, Hashim H. A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable & Sustainable Energy Reviews, 2012, 16(5): 3084–3094

    Article  CAS  Google Scholar 

  15. Singh R, Srivastava M, Shukla A. Environmental sustainability of bioethanol production from rice straw in India: a review. Renewable & Sustainable Energy Reviews, 2016, 54: 202–216

    Article  CAS  Google Scholar 

  16. Quignard F, Choplin A. Cellulose: a new bio-support for aqueous phase catalysts. Chemical Communications, 2001(1): 21–22

  17. Sekhar C P, Kalidhasan S, Rajesh V, Rajesh N. Bio-polymer adsorbent for the removal of malachite green from aqueous solution. Chemosphere, 2009, 77(6): 842–847

    Article  PubMed  Google Scholar 

  18. Kandathil V, Kempasiddaiah M, Sasidhar B, Patil S A. From agriculture residue to catalyst support; a green and sustainable cellulose-based dip catalyst for CC coupling and direct arylation. Carbohydrate Polymers, 2019, 223: 115060

    Article  CAS  PubMed  Google Scholar 

  19. Moon R J, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40(7): 3941–3994

    Article  CAS  PubMed  Google Scholar 

  20. Kandathil V, Veetil A K, Patra A, Moolakkil A, Kempasiddaiah M, Somappa S B, Rout C S, Patil S A. A green and sustainable cellulosic-carbon-shielded Pd-MNP hybrid material for catalysis and energy storage applications. Journal of Nanostructure in Chemistry, 2021, 11(3): 395–407

    Article  CAS  Google Scholar 

  21. Zhang Y, Hao N, Lin X, Nie S. Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: a review. Carbohydrate Polymers, 2020, 234: 115888

    Article  CAS  PubMed  Google Scholar 

  22. Dumanlı A G, Windle A H. Carbon fibres from cellulosic precursors: a review. Journal of Materials Science, 2012, 47(10): 4236–4250

    Article  Google Scholar 

  23. Jayaprabha J, Brahmakumar M, Manilal V. Banana pseudostem characterization and its fiber property evaluation on physical and bioextraction. Journal of Natural Fibers, 2011, 8(3): 149–160

    Article  CAS  Google Scholar 

  24. Astruc D. Palladium nanoparticles as efficient green homogeneous and heterogeneous carbon-carbon coupling precatalysts: a unifying view. Inorganic Chemistry, 2007, 46(6): 1884–1894

    Article  CAS  PubMed  Google Scholar 

  25. McCue A J, Anderson J A. Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Frontiers of Chemical Science and Engineering, 2015, 9(2): 142–153

    Article  CAS  Google Scholar 

  26. Kandathil V, Kulkarni B, Siddiqa A, Kempasiddaiah M, Sasidhar B S, Patil S A. Immobilized N-heterocyclic carbene-palladium(II) complex on graphene oxide as efficient and recyclable catalyst for Suzuki—Miyaura cross-coupling and reduction of nitroarenes. Catalysis Letters, 2020, 150(2): 384–403

    Article  CAS  Google Scholar 

  27. Foubelo F, Nájera C, Yus M. The Hiyama cross-coupling reaction: new discoveries. Chemical Record, 2016, 16(6): 2521–2533

    Article  CAS  PubMed  Google Scholar 

  28. Maluenda I, Navarro O. Recent developments in the Suzuki-Miyaura reaction: 2010–2014. Molecules, 2015, 20(5): 7528–7557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kandathil V, Siddiqa A, Patra A, Kulkarni B, Kempasiddaiah M, Sasidhar B S, Patil S A, Rout C S, Patil S A. NHC-Pd complex heterogenized on graphene oxide for cross-coupling reactions and supercapacitor applications. Applied Organometallic Chemistry, 2020, 34(11): e5924

    Article  CAS  Google Scholar 

  30. Wu X F, Neumann H, Beller M. Synthesis of heterocycles via palladium-catalyzed carbonylations. Chemical Reviews, 2013, 113(1): 1–35

    Article  PubMed  Google Scholar 

  31. Hatanaka Y, Hiyama T. Cross-coupling of organosilanes with organic halides mediated by a palladium catalyst and tris(diethylamino) sulfonium difluorotrimethylsilicate. Journal of Organic Chemistry, 1988, 53(4): 918–920

    Article  CAS  Google Scholar 

  32. Tamao K, Kobayashi K, Ito Y. Palladium-catalyzed cross-coupling reaction of alkenylalkoxysilanes with aryl and alkenyl halides in the presence of a fluoride ion. Tetrahedron Letters, 1989, 30(44): 6051–6054

    Article  CAS  Google Scholar 

  33. Ichii S, Hamasaka G, Uozumi Y. The Hiyama cross-coupling reaction at parts per million levels of Pd: in situ formation of highly active spirosilicates in glycol solvents. Chemistry, an Asian Journal, 2019, 14(21): 3850–3854

    Article  CAS  PubMed  Google Scholar 

  34. Nozawa-Kumada K, Osawa S, Sasaki M, Chataigner I, Shigeno M, Kondo Y. Deprotonative silylation of aromatic C-H bonds mediated by a combination of trifluoromethyltrialkylsilane and fluoride. Journal of Organic Chemistry, 2017, 82(18): 9487–9496

    Article  CAS  PubMed  Google Scholar 

  35. Kandathil V, Dateer R B, Sasidhar B, Patil S A, Patil S A. Green synthesis of palladium nanoparticles: applications in aryl halide cyanation and Hiyama cross-coupling reaction under ligand free conditions. Catalysis Letters, 2018, 148(6): 1562–1578

    Article  CAS  Google Scholar 

  36. Li B, Qiao S, Zheng X, Yang X, Cui Z, Zhu S, Li Z Y, Liang Q Y. Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. Journal of Power Sources, 2015, 284: 68–76

    Article  CAS  Google Scholar 

  37. Grigoriev S, Millet P, Fateev V. Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers. Journal of Power Sources, 2008, 177(2): 281–285

    Article  CAS  Google Scholar 

  38. Grigoriev S, Mamat M, Dzhus K, Walker G, Millet P. Platinum and palladium nano-particles supported by graphitic nano-fibers as catalysts for PEM water electrolysis. International Journal of Hydrogen Energy, 2011, 36(6): 4143–4147

    Article  CAS  Google Scholar 

  39. Mahesh K N, Balaji R, Dhathathreyan K. Palladium nanoparticles as hydrogen evolution reaction (HER) electrocatalyst in electrochemical methanol reformer. International Journal of Hydrogen Energy, 2016, 41(1): 46–51

    Article  Google Scholar 

  40. Ghasemi S, Hosseini S R, Nabipour S, Asen P. Palladium nanoparticles supported on graphene as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2015, 40(46): 16184–16191

    Article  CAS  Google Scholar 

  41. Huang Y X, Liu X W, Sun X F, Sheng G P, Zhang Y Y, Yan G M, Wang S G, Xu A W, Yu H Q. A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell. International Journal of Hydrogen Energy, 2011, 36(4): 2773–2776

    Article  CAS  Google Scholar 

  42. Vishal K, Fahlman B D, Sasidhar B S, Patil S A, Patil S A. Magnetic nanoparticle-supported N-heterocyclic carbene-palladium(II): a convenient, efficient and recyclable catalyst for Suzuki-Miyaura cross-coupling reactions. Catalysis Letters, 2017, 147(4): 900–918

    Article  CAS  Google Scholar 

  43. Kandathil V, Fahlman B D, Sasidhar B S, Patil S A, Patil S A. A convenient, efficient and reusable N-heterocyclic carbene-palladium(II) based catalyst supported on magnetite for Suzuki-Miyaura and Mizoroki-Heck cross-coupling reactions. New Journal of Chemistry, 2017, 41(17): 9531–9545

    Article  CAS  Google Scholar 

  44. Gu J, Hu C, Zhang W, Dichiara A B. Reagentless preparation of shape memory cellulose nanofibril aerogels decorated with Pd nanoparticles and their application in dye discoloration. Applied Catalysis B: Environmental, 2018, 237: 482–490

    Article  CAS  Google Scholar 

  45. Gu J, Dichiara A. Hybridization between cellulose nanofibrils and faceted silver nanoparticles used with surface enhanced Raman scattering for trace dye detection. International Journal of Biological Macromolecules, 2020, 143: 85–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank DST-SERB, India (YSS/2015/000010), DST-Nanomission, India (SR/NM/NS-20/2014), and Jain University, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddappa A. Patil.

Electronic supplementary material

11705_2022_2158_MOESM1_ESM.pdf

Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for C-C coupling and electrocatalytic application

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandathil, V., Moolakkil, A., Kulkarni, P. et al. Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for C-C coupling and electrocatalytic application. Front. Chem. Sci. Eng. 16, 1514–1525 (2022). https://doi.org/10.1007/s11705-022-2158-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2158-y

Keywords

Navigation