Skip to main content
Log in

Molecular level understanding of CO2 capture in ionic liquid/polyimide composite membrane

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Ionic liquid (IL)/polyimide (PI) composite membranes demonstrate promise for use in CO2 separation applications. However, few studies have focused on the microscopic mechanism of CO2 in these composite systems, which is important information for designing new membranes. In this work, a series of systems of CO2 in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide composited with 4,4-(hexafluoroisopropylidene) diphthalic anhydride (6FDA)-based PI, 6FDA-2,3,5,6-tetramethyl-1,4-phenylene-diamine, at different IL concentrations were investigated by all-atom molecular dynamics simulation. The formation of IL regions in PI was found, and the IL regions gradually became continuous channels with increasing IL concentrations. The analysis of the radial distribution functions and hydrogen bond numbers demonstrated that PI had a stronger interaction with cations than anions. However, the hydrogen bonds among PI chains were destroyed by the addition of IL, which was favorable for transporting CO2. Furthermore, the self-diffusion coefficient and free energy barrier suggested that the diffusion coefficient of CO2 decreased with increasing IL concentrations up to 35 wt-% due to the decrease of the fractional free volume of the composite membrane. However, the CO2 self-diffusion coefficients increased when the IL contents were higher than 35 wt-%, which was attributed to the formation of continuous IL domain that benefitted the transportation of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng L Y, Kvamsdal H. CO2 capture: challenges and opportunities. Green Energy & Environment, 2016, 1(3): 179–179

    Article  Google Scholar 

  2. Quale S, Rohling V. The European carbon dioxide capture and storage laboratory infrastructure (ECCSEL). Green Energy & Environment, 2016, 1(3): 180–194

    Article  Google Scholar 

  3. Boothandford M E, Abanades J C, Anthony E J, Blunt M J, Brandani S, Dowell N M, Fernandez J R, Ferrari M, Gross R, Hallett J P. Carbon capture and storage update. Energy & Environmental Science, 2014, 7(1): 130–189

    Article  CAS  Google Scholar 

  4. Vitillo J G, Smit B, Gagliardi L. Introduction: carbon capture and separation. Chemical Reviews, 2017, 117(14): 9521–9523

    Article  CAS  PubMed  Google Scholar 

  5. Li M, Jiang X, He G. Application of membrane separation technology in postcombustion carbon dioxide capture process. Frontiers of Chemical Science and Engineering, 2014, 8(2): 233–239

    Article  CAS  Google Scholar 

  6. Kanehashi S, Scholes C A. Perspective of mixed matrix membranes for carbon capture. Frontiers of Chemical Science and Engineering, 2020, 14(3): 1–10

    Article  Google Scholar 

  7. Pandiyan S, Brown D, Neyertz S, van der Vegt N F A. Carbon dioxide solubility in three fluorinated polyimides studied by molecular dynamics simulations. Macromolecules, 2010, 43(5): 2605–2621

    Article  CAS  Google Scholar 

  8. Tong H, Hu C, Yang S, Ma Y, Guo H, Fan L. Preparation of fluorinated polyimides with bulky structure and their gas separation performance correlated with microstructure. Polymer, 2015, 69: 138–147

    Article  CAS  Google Scholar 

  9. O’Harra K E, Kammakakam I, Devriese E M, Noll D M, Bara J E, Jackson E M. Synthesis and performance of 6FDA-based polyimide-ionenes and composites with ionic liquids as gas separation membranes. Membranes, 2019, 9(7): 79–96

    Article  PubMed Central  Google Scholar 

  10. Kanehashi S, Kishida M, Kidesaki T, Shindo R, Sato S, Miyakoshi T, Nagai K. CO2 separation properties of a glassy aromatic polyimide composite membranes containing high-content 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid. Journal of Membrane Science, 2013, 430: 211–222

    Article  CAS  Google Scholar 

  11. Weigelt F, Escorihuela S, Descalzo A, Tena A, Escolastico S, Shishatskiy S, Serra J M, Brinkmann T. Novel polymeric thin-film composite membranes for high-temperature gas separations. Membranes, 2019, 9(4): 51–64

    Article  PubMed Central  Google Scholar 

  12. Zhang X, Feng H, Liu Z, Wang W, Maginn E J. Absorption of CO2 in the ionic liquid 1-n-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([Hmim][FEP]): a molecular view by computer simulations. Journal of Physical Chemistry B, 2009, 113 (21): 7591–7598

    Article  CAS  Google Scholar 

  13. Zhang X, Liu Z, Wang W. Screening of ionic liquids to capture CO2 by COSMO-RS and experiments. AIChE Journal. American Institute of Chemical Engineers, 2008, 54(10): 2717–2728

    Article  CAS  Google Scholar 

  14. Haghtalab A, Shojaeian A. High pressure measurement and thermodynamic modelling of the solubility of carbon dioxide in N-methyldiethanolamine and 1-butyl-3-methylimidazolium acetate mixture. Journal of Chemical Thermodynamics, 2015, 81: 237–244

    Article  CAS  Google Scholar 

  15. Jalili A H, Mehdizadeh A, Shokouhi M, Sakhaeinia H, Taghikhani V. Solubility of CO2 in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions. Journal of Chemical Thermodynamics, 2010, 42(6): 787–791

    Article  CAS  Google Scholar 

  16. Lei X, Xu Y, Zhu L, Wang X. Highly efficient and reversible CO2 capture through 1,1,3,3-tetramethylguanidinium imidazole ionic liquid. RSC Advances, 2014, 4(14): 7052–7054

    Article  CAS  Google Scholar 

  17. Wang J, Zeng S, Huo F, Shang D, He H, Bai L, Zhang X, Li J. Metal chloride anion-based ionic liquids for efficient separation of NH3. Journal of Cleaner Production, 2019, 206: 661–669

    Article  CAS  Google Scholar 

  18. Li P, Coleman M R. Synthesis of room temperature ionic liquids based random copolyimides for gas separation applications. European Polymer Journal, 2013, 49(2): 482–491

    Article  CAS  Google Scholar 

  19. Mittenthal M S, Flowers B S, Bara J E, Whitley J W, Spear S K, Roveda J D, Wallace D A, Shannon M S, Holler R, Martens R, Daly D T. Ionic polyimides: hybrid polymer architectures and composites with ionic liquids for advanced gas separation membranes. Industrial & Engineering Chemistry Research, 2017, 56(17): 5055–5069

    Article  CAS  Google Scholar 

  20. Ito A, Yasuda T, Ma X, Watanabe M. Sulfonated polyimide/ionic liquid composite membranes for carbon dioxide separation. Polymer Journal, 2017, 49(9): 671–676

    Article  CAS  Google Scholar 

  21. Monteiro B, Nabais A R, Almeida Paz F A, Cabrita L, Branco L C, Marrucho I M, Neves L A, Pereira C C L. Membranes with a low loading of metal-organic framework-supported ionic liquids for CO2/N2 separation in CO2 capture. Energy Technology (Weinheim), 2017, 5(12): 2158–2162

    Article  CAS  Google Scholar 

  22. Balçık M, Ahunbay M G. Prediction of CO2-induced plasticization pressure in polyimides via atomistic simulations. Journal of Membrane Science, 2018, 547: 146–155

    Article  Google Scholar 

  23. Zhang X, Liu Z, Liu X. Understanding the interactions between tris (pentafluoroethyl)-trifluorophosphate-based ionic liquid and small molecules from molecular dynamics simulation. Science China. Chemistry, 2012, 55(8): 1557–1565

    Article  CAS  Google Scholar 

  24. Lourenco T C, Coelho M F, Ramalho T C, Van Der Spoel D, Costa L T. Insights on the solubility of CO2 in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide from the microscopic point of view. Environmental Science & Technology, 2013, 47(13): 7421–7429

    Article  CAS  Google Scholar 

  25. Abedini A, Crabtree E, Bara J E, Turner C H. Molecular simulation of ionic polyimides and composites with ionic liquids as gasseparation membranes. Langmuir, 2017, 33(42): 11377–11389

    Article  CAS  PubMed  Google Scholar 

  26. Spoel D V D, Lindahl E, Hess B, Groenhof G, Berendsen H J C. GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 2005, 26(16): 1701–1718

    Article  Google Scholar 

  27. Hess B, Kutzner C, Van Der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 2008, 4(3): 435–447

    Article  CAS  PubMed  Google Scholar 

  28. Liu Z P, Huang S P, Wang W C. A refined force field for molecular simulation of imidazolium-based ionic liquids. Journal of Physical Chemistry B, 2004, 108(34): 12978–12989

    Article  CAS  Google Scholar 

  29. Lopes J N C, Pádua A A H. Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. Journal of Physical Chemistry B, 2004, 108(43): 16893–16898

    Article  CAS  Google Scholar 

  30. Tanis I, Brown D, Neyertz S J, Heck R, Mercier R. A comparison of homopolymer and block copolymer structure in 6FDA-based polyimides. Physical Chemistry Chemical Physics, 2014, 16(42): 23044–23055

    Article  CAS  PubMed  Google Scholar 

  31. Wang J, Wolf R M, Caldwell J W, Kollman P A, Case D A. Development and testing of a general amber force field. Journal of Computational Chemistry, 2004, 25(9): 1157–1174

    Article  CAS  PubMed  Google Scholar 

  32. Martínez L, Andrade R, Birgin E G, Martínez J M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 2009, 30(13): 2157–2164

    Article  PubMed  Google Scholar 

  33. Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G. A smooth particle mesh Ewald method. Journal of Chemical Physics, 1995, 103(19): 8577–8593

    Article  CAS  Google Scholar 

  34. Hess B, Bekker H, Berendsen H J C, Fraaije J G E M. LINCS: a linear constraint solver for molecular simulations. Journal of Chemical Theory and Computation, 1997, 18(12): 1463–1472

    CAS  Google Scholar 

  35. Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. Journal of Applied Physics, 1981, 52(12): 7182–7190

    Article  CAS  Google Scholar 

  36. Braga C, Travis K P. A configurational temperature Nosé-Hoover thermostat. Journal of Computational Physics, 2005, 123(13): 134101–134116

    Google Scholar 

  37. Shi W, Maginn E J. Atomistic simulation of the absorption of carbon dioxide and water in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [hmim] [Tf2N]. Journal of Physical Chemistry B, 2008, 112(7): 2045–2055

    Article  CAS  Google Scholar 

  38. Torrie G M, Valleau J P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. Journal of Computational Physics, 1977, 23(2): 187–199

    Article  Google Scholar 

  39. Kumar S, Rosenberg J M, Bouzida D, Swendsen R H, Kollman P A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of Computational Chemistry, 1992, 13(8): 1011–1021

    Article  CAS  Google Scholar 

  40. Wang Y, Wang C, Zhang Y, Huo F, He H, Zhang S. Molecular insights into the regulatable interfacial property and flow behavior of confined ionic liquids in graphene nanochannels. Small, 2019, 15 (29): 1804508–1804518

    Article  Google Scholar 

  41. Sun D L, Zhou J. Ionic liquid confined in nafion: toward molecular-level understanding. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(7): 2630–2639

    Article  CAS  Google Scholar 

  42. Song T, Zhang X, Li Y, Jiang K, Zhang S, Cui X, Bai L. Separation efficiency of CO2 in ionic liquids/poly(vinylidene fluoride) composite membrane: a molecular dynamics study. Industrial & Engineering Chemistry Research, 2019, 58(16): 6887–6898

    Article  CAS  Google Scholar 

  43. Zhang X, Huo F, Liu X, Dong K, He H, Yao X, Zhang S. Influence of microstructure and interaction on viscosity of ionic liquids. Industrial & Engineering Chemistry Research, 2015, 54(13): 3505–3514

    Article  Google Scholar 

  44. Dong K, Liu X, Dong H, Zhang X, Zhang S. Multiscale studies on ionic liquids. Chemical Reviews, 2017, 117(10): 6636–6695

    Article  CAS  PubMed  Google Scholar 

  45. Bondi A. Van der Waals volumes and radii. Journal of Physical Chemistry, 1964, 68(3): 441–451

    Article  CAS  Google Scholar 

  46. Lee W M. Selection of barrier materials from molecular-structure. Polymer Engineering and Science, 1980, 20(1): 65–69

    Article  CAS  Google Scholar 

  47. Tanaka K, Kita H, Okano M, Okamoto K. Permeability and permselectivity of gases in fluorinated and non-fluorinated polyimides. Polymer, 1992, 33(3): 585–592

    Article  CAS  Google Scholar 

  48. Cheng H, Zhang J, Qi Z. Effects of interaction with sulphur compounds and free volume in imidazolium-based ionic liquid on desulphurisation: a molecular dynamics study. Molecular Simulation, 2018, 44(1): 55–62

    Article  CAS  Google Scholar 

  49. Cantley L, Swett J L, Lloyd D, Cullen D A, Zhou K, Bedworth P V, Heise S, Rondinone A J, Xu Z P, Sinton S, Bunch J S. Voltage gated inter-cation selective ion channels from graphene nanopores. Nanoscale, 2019, 11(20): 9856–9861

    Article  CAS  PubMed  Google Scholar 

  50. Zhou K, Xu Z P. Ion permeability and selectivity in composite nanochannels: engineering through the end effects. Journal of Physical Chemistry C, 2020, 124(8): 4890–4898

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2018YFB0605802), the National Natural Science Foundation of China (Grant Nos. 51674234, 21978293, U1704251), “Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA 21030500), NSFC-NRCT joint project (Grant No. 51661145012), and CAS Pioneer Hundred Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yandong Guo or Xiaochun Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, L., Guo, Y., He, Y. et al. Molecular level understanding of CO2 capture in ionic liquid/polyimide composite membrane. Front. Chem. Sci. Eng. 16, 141–151 (2022). https://doi.org/10.1007/s11705-020-2009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-2009-7

Keywords

Navigation