Skip to main content
Log in

Imprinted membranes for sustainable separation processes

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The rapid industrial growth and the necessity of recovering and recycling raw materials increased the interest in the production of highly selective and efficient separation tools. In this perspective, a relevant input was given by the membrane-based technology and the production of imprinted membranes, which possess specific recognition properties at molecular and ionic level, offers the possibility of developing sustainable and green processes. Furthermore, the integration of imprinted membranes with traditional or membrane-based approaches is a promising strategy in the logic of process intensification, which means the combination of different operations in a single apparatus. This work discusses the concept and separation mechanisms of imprinted membranes. Furthermore, it presents an overview of their application in organic solvent nanofiltration, for the removal of toxic agents and recovery solvent, as well as valuable compounds. The recent advances in water treatment, such as pesticide removal and recovery of metal ions, are also discussed. Finally, potential applications of imprinted membranes in hybrid processes are highlighted, and a look into the future of membrane separations for water treatment and recovery of critical raw materials is offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sholl D S, Lively R P. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437

    Article  PubMed  Google Scholar 

  2. Drioli E, Stankiewicz A I, Macedonio F. Membrane engineering in process intensification: an overview. Journal of Membrane Science, 2011, 380(1–2): 1–8

    Article  CAS  Google Scholar 

  3. Drioli E, Brunetti A, Di Profio G, Barbieri G. Process intensification strategies and membrane engineering. Green Chemistry, 2012, 14(6): 1561–1572

    Article  CAS  Google Scholar 

  4. Drioli E, Di Profio G, Fontananova E. Membrane separations for process intensification and sustainable growth. Fluid-Particle Separation Journal, 2004, 16(1): 1–18

    CAS  Google Scholar 

  5. Cassano A, Conidi C, Ruby-Figueroa R. Recovery of flavonoids from orange press liquor by an integrated membrane process. Membranes, 2014, 4(3): 509–246

    Article  PubMed  PubMed Central  Google Scholar 

  6. Didaskalou C, Buyuktiryaki S, Kecili R, Fonte C P, Szekely G. Valorisation of agricultural waste with an adsorption/nanofiltration hybrid process: from materials to sustainable process design. Green Chemistry, 2017, 19(13): 3116–3125

    Article  CAS  Google Scholar 

  7. Piacentini E, Mazzei R, Drioli E, Giorno L. Comprehensive Membrane Science and Engineering. 2nd ed. Amsterdam: Elsevier, 2010, 1–16

    Google Scholar 

  8. Nascimento T A, Fdz-Polanco F, Peña M. Membrane-based technologies for the up-concentration of municipal wastewater: a review of pretreatment intensification. Separation and Purification Reviews, 2020, 49(1): 1–19

    Article  CAS  Google Scholar 

  9. Macedonio F, Drioli E. Membrane engineering for green process engineering. Engineering, 2017, 3(3): 290–298

    Article  Google Scholar 

  10. Macedonio F, Drioli E, Gusev A, Bardow A, Semiat R, Kurihara M. Efficient technologies for worldwide clean water supply. Chemical Engineering and Processing, 2012, 51: 2–17

    Article  CAS  Google Scholar 

  11. Girard B, Fukumoto L R, Sefa Koseoglu S. Membrane processing of fruit juices and beverages: a review. Critical Reviews in Biotechnology, 2000, 20(2): 109–175

    Article  CAS  PubMed  Google Scholar 

  12. Cassano A, Conidi C, Drioli E. Clarification and concentration of pomegranate juice (Punica granatum L.) using membrane processes. Journal of Food Engineering, 2011, 107(3–4): 366–373

    Article  CAS  Google Scholar 

  13. Schaepertoens M, Didaskalou C, Kim J F, Livingston A G, Szekely G. Solvent recycle with imperfect membranes: a semi-continuous workaround for diafiltration. Journal of Membrane Science, 2016, 514: 646–658

    Article  CAS  Google Scholar 

  14. Kim J F, Székely G, Valtcheva I B, Livingston A G. Increasing the sustainability of membrane processes through cascade approach and solvent recovery—pharmaceutical purification case study. Green Chemistry, 2014, 16(1): 133–145

    Article  Google Scholar 

  15. Donato L, Algieri C, Rizzi A, Giorno L. Kinetic study of tyrosinase immobilized on polymeric membrane. Journal of Membrane Science, 2014, 454: 346–350

    Article  CAS  Google Scholar 

  16. Galiano F, Briceño K, Marino T, Molino A, Christensen K V, Figoli A. Advances in biopolymer-based membrane preparation and applications. Journal of Membrane Science, 2018, 564: 562–586

    Article  CAS  Google Scholar 

  17. Algieri C, Drioli E, Donato L. Development of mixed matrix membranes for controlled release of ibuprofen. Journal of Applied Polymer Science, 2013, 128(1): 754–760

    Article  CAS  Google Scholar 

  18. Koltuniewicz A B, Drioli E. Membranes in Clean Technologies. Theory and Practice. 1st ed. Hoboken: Wiley-Vch Verlag GmbH & Co., 2008, 1–12

    Google Scholar 

  19. Hołda A K, Aernouts B, Saeys W, Vankelecom I F J. Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes. Journal of Membrane Science, 2013, 442: 196–205

    Article  Google Scholar 

  20. Simone S, Figoli A, Santoro S, Galiano F, Alfadul S, Al-Harbi O A, Drioli E. Preparation and characterization of ECTFE solvent resistant membranes and their application in pervaporation of water/toluene mixtures. Separation and Purification Technology, 2012, 90: 147–161

    Article  CAS  Google Scholar 

  21. Lu J, Qin Y, Wu Y, Meng M, Yan Y, Li C. Recent advances in ion-imprinted membranes: separation and detection via ion-selective recognition. Environmental Science. Water Research & Technology, 2019, 5(10): 1626–1653

    Article  CAS  Google Scholar 

  22. Yoshikawa M, Tharpa K, Dima S O. Molecularly imprinted membranes: past, present, and future. Chemical Reviews, 2016, 116(19): 11500–11528

    Article  CAS  PubMed  Google Scholar 

  23. Algieri C, Drioli E, Guzzo L, Donato L. Bio-mimetic sensors based on molecularly imprinted membranes. Sensors (Basel), 2014, 14 (8): 13863–13912

    Article  Google Scholar 

  24. Donato L, Algieri C, Drioli E, Ahmed C, Nasser I. Emerging tools for recognition and/or removal of dyes from polluted sites: molecularly imprinted membranes. Journal of Membrane and Separation Technology, 2014, 3(4): 243–266

    Article  Google Scholar 

  25. Trotta F, Biasizzo M, Caldera F. Molecularly imprinted membranes. Membranes, 2012, 2(3): 440–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ulbricht M. Membrane separations using molecularly imprinted polymers. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 2004, 804(1): 113–125

    Article  CAS  PubMed  Google Scholar 

  27. Lu J, Qin Y, Wu Y, Meng M, Dong Z, Yu C, Yan Y, Li C, Nyarko F K. Bidirectional molecularly imprinted membranes for selective recognition and separation of pyrimethamine: a double-faced loading strategy. Journal of Membrane Science, 2020, 101: 117917

    Article  Google Scholar 

  28. Keçili R, Yılmaz E, Ersöz A, Say R. Sustainable Nanoscale Engineering: from Materials Design to Chemical Processing. 1st ed. Amsterdam: Elsevier, 2020, 317–350

    Book  Google Scholar 

  29. Ajith J J, Jincymol K, Muthukaruppan A. Fundamental Biomaterials: Polymers. 1st ed. Sawston: Woodhead Publishing, 2018, 21

    Google Scholar 

  30. Klein E. Affinity membranes: a 10-year review. Journal of Membrane Science, 2000, 179(1–2): 1–27

    Article  CAS  Google Scholar 

  31. Mulder M. Basic Principles of Membrane Technology. 2nd. ed. Dordrecht: Kluwer Academic Publishers, 1991, 198–278

    Google Scholar 

  32. Rajesha K, Arun M I. Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications. 2nd ed. London: CRC Press, 2015, 465–481

    Google Scholar 

  33. Kubota N, Hashimoto T, Mori Y. Advanced Membrane Technology and Applications. 1st ed. New York: John Wiley & Sons, Inc., 2008, 101–129

    Book  Google Scholar 

  34. Lorenzo R A, Carro A M, Alvarez-Lorenzo C, Concheiro A. To remove or not to remove? The challenge of extracting the template to make the cavities available in molecularly imprinted polymers (MIPs). International Journal of Molecular Sciences, 2011, 12(7): 4327–4347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Madikizela L M, Tavengwa N T, Tutu H, Chimuka L. Green aspects in molecular imprinting technology: from design to environmental applications. Trends in Environmental Analytical Chemistry, 2018, 17: 14–22

    Article  CAS  Google Scholar 

  36. Batlokwa B S, Mokgadi J, Nyokong T, Torto N. Optimal template removal from molecularly imprinted polymers by pressurized hot water extraction. Chromatographia, 2011, 73(5–6): 589–593

    Article  CAS  Google Scholar 

  37. Wulff G, Sarhan A. Polymers designed for racial egregation by enzymatic means. Angewandte Chemie, 1972, 84(8): 363–364 (in German)

    Google Scholar 

  38. Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies. Angewandte Chemie, 1995, 34(17): 1812–1832

    Article  CAS  Google Scholar 

  39. Sellergren B, Lepistoe M, Mosbach K. Highly enantioselective and substrate selective polymers obtained by molecular imprinting utilizing non-covalent interactions. NMR and chromatographic studies on the nature of recognition. Journal of the American Chemical Society, 1988, 110(17): 5853–5860

    Article  CAS  Google Scholar 

  40. Yan H, Row K H. Characteristics and synthetic approach of molecularly imprinted polymers. International Journal of Molecular Sciences, 2006, 7(5): 155–178

    Article  CAS  Google Scholar 

  41. Alexander C, Andersson H S, Andersson L I, Ansell R J, Kirsch N, Nicholls I A, O’Mahony J, Whitcombe M J. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. Journal of Molecular Recognition, 2006, 19 (2): 106–180

    Article  CAS  PubMed  Google Scholar 

  42. Ylmaz E, Schmidt R H, Mosbach K. Molecularly Imprinted Materials: Science and Technology. 1st ed. Boca Raton: Taylor & Francis Group, 2005, 25–57

    Google Scholar 

  43. Donato L, Mazzei R, Algieri C, Piacentini E, Poerio T, Giorno L. Smart Membranes and Sensors: Synthesis, Characterization, and Applications. 1st ed. Beverly: Wiley-Scrivener, 2014, 269–300

    Google Scholar 

  44. Donato L, Figoli A, Drioli E. Novel composite poly(4-vinylpyridine)/polypropylene membranes with recognition properties for (S)-naproxen. Journal of Pharmaceutical and Biomedical Analysis, 2005, 37(5): 1003–1008

    Article  CAS  PubMed  Google Scholar 

  45. Li J, Zhang L, Fu C. Molecularly imprinted catalysts. 1st ed. Amsterdam: Elsevier, 2016, 159–182

    Book  Google Scholar 

  46. Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chemical Society Reviews, 2016, 45(8): 2137–2211

    Article  CAS  PubMed  Google Scholar 

  47. Whitcombe M C, Kirsch N, Nicholls I A. Molecular imprinting science and technology: a survey of the literature for the years 2004–2011. Journal of Molecular Recognition, 2014, 27(6): 297–401

    Article  CAS  PubMed  Google Scholar 

  48. Wang C L, Hu X L, Guan P, Wu D F, Yang L F, Du C B. Preparation of molecularly imprinted regenerated cellulose composite membranes by surface-initiated atom transfer radical polymerization method for selective recognition of lysozyme. Adsorption Science and Technology, 2015, 33(4): 411–425

    Article  CAS  Google Scholar 

  49. Moein M M, Javanbakht M, Karimi M, Akbari-Adergani B, Abdel-Rehim M. A new strategy for surface modification of polysulfone membrane by in situ imprinted sol-gel method for the selective separation and screening of l-tyrosine as a lung cancer biomarker. Analyst (London), 2015, 140(6): 1939–1946

    Article  CAS  Google Scholar 

  50. Silvestri D, Barbani N, Cristallini C, Giusti P, Ciardelli G. Molecularly imprinted membranes for an improved recognition of biomolecules in aqueous medium. Journal of Membrane Science, 2006, 282(1–2): 284–295

    Article  CAS  Google Scholar 

  51. Yoshikawa M, Nakai K, Matsumoto H, Tanioka A, Guiver M D, Robertson G P. Molecularly imprinted nanofiber membranes from carboxylated polysulfone by electrospray deposition. Macromolecular Rapid Communications, 2007, 28(21): 2100–2105

    Article  CAS  Google Scholar 

  52. Sueyoshi Y, Utsunomiya A, Yoshikawa M, Robertson G P, Guiver M D. Chiral separation with molecularly imprinted polysulfonealdehyde derivatized nanofiber membranes. Journal of Membrane Science, 2012, 401–402: 89–96

    Article  Google Scholar 

  53. Matsumoto H, Tanioka A. Functionality in electrospun nanofibrous membranes based on fiber’s size, surface area, and molecular orientation. Membranes, 2011, 1(3): 249–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim W J, Chang J Y. Molecularly imprinted polyimide nanofiber prepared by electrospinning. Materials Letters, 2011, 65(9): 1388–1391

    Article  CAS  Google Scholar 

  55. Greiner A, Wendorff J H. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie, 2007, 46 (30): 5670–5703

    Article  CAS  PubMed  Google Scholar 

  56. Dima S O, Dobre T, Stoica-Guzun A, Oancea F, Jinga S I, Nicolae C A. Molecularly imprinted bio-membranes based on cellulose nano-fibers for drug release and selective separations. Macromolecular Symposia, 2016, 359(1): 124–128

    Article  CAS  Google Scholar 

  57. Tamahkar E, Kutsal T, Denizli A. Surface imprinted bacterial cellulose nanofibers for cytochrome c. Process Biochemistry, 2015, 50(12): 2289–2297

    Article  CAS  Google Scholar 

  58. Piacham T, Isarankura-Na-Ayudhya C, Prachayasittikul V. A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers. Chemical Papers, 2014, 68(6): 838–841

    Article  CAS  Google Scholar 

  59. Kunitake T, Lee S W. Molecular imprinting in ultrathin titania gel films via surface gel process. Analytica Chimica Acta, 2004, 504 (1): 1–6

    Article  CAS  Google Scholar 

  60. Zhang M, Huang J, Yu P, Chen X. Preparation and characteristics of protein molecularly imprinted membranes on the surface of multiwalled carbon nanotubes. Talanta, 2010, 81(1–2): 162–166

    Article  CAS  PubMed  Google Scholar 

  61. Ceolin G, Navarro-Villoslada F, Moreno-Bondi M C, Horvai G, Horvath V. Accelerated development procedure for molecularly imprinted polymers using membrane filterplates. Journal of Combinatorial Chemistry, 2009, 11(4): 645–652

    Article  CAS  PubMed  Google Scholar 

  62. Alizadeh T, Memarbashi N. Evaluation of the facilitated transport capabilities of nano- and micro-sized molecularly imprinted polymers (MIPs) in a bulk liquid membrane system. Separation and Purification Technology, 2012, 90: 83–91

    Article  CAS  Google Scholar 

  63. Barahona F, Turiel E, Martín-Esteban A. Supported liquid membrane-protected molecularly imprinted fibre for solid-phase microextraction of thiabendazole. Analytica Chimica Acta, 2011, 694(1–2): 83–89

    Article  CAS  PubMed  Google Scholar 

  64. Akgönüllü S, Yavuz H, Denizli A. Preparation of imprinted cryogel cartridge for chiral ceparation of l-phenylalanine. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45(4): 800–807

    Article  PubMed  Google Scholar 

  65. Çetin K, Denizli A. 5-Fluorouracil delivery from metal-ion mediated molecularly imprinted cryogel discs. Colloids and Surfaces. B, Biointerfaces, 2015, 126: 401–406

    Article  PubMed  Google Scholar 

  66. Meng M, Feng Y, Liu Y, Dai X, Pan J, Yan Y. Fabrication of submicrosized imprinted spheres attached polypropylene membrane using “two-dimensional” molecular imprinting method for targeted separation. Adsorption Science and Technology, 2017, 35 (1–2): 162–177

    Article  CAS  Google Scholar 

  67. Boysen R I, Schwarz L J, Nicolau D V, Hearn M T W. Molecularly imprinted polymer membranes and thin films for the separation and sensing of biomacromolecules. Journal of Separation Science, 2017, 40(1): 314–335

    Article  CAS  PubMed  Google Scholar 

  68. Yoshikawa M, Tanioka A, Matsumoto H. Molecularly imprinted nanofiber membranes. Current Opinion in Chemical Engineering, 2011, 1(1): 18–26

    Article  CAS  Google Scholar 

  69. Marchetti P, Jimenez-Solomon M F, Szekely G, Livingston A G. Molecular separation with organic solvent nanofiltration: a critical review. Chemical Reviews, 2014, 114(21): 10735–10806

    Article  CAS  PubMed  Google Scholar 

  70. Szekely G, Jimenez-Solomon M F, Marchetti P, Kim J F, Livingston A G. Sustainability assessment of organic solvent nanofiltration: from fabrication to application. Green Chemistry, 2014, 16(10): 4440–4473

    Article  CAS  Google Scholar 

  71. De Luca G, Donato L, García Del Blanco S, Tasselli F, Drioli E. On the cause of controlling affinity to small molecules of imprinted polymeric membranes prepared by noncovalent approach: a computational and experimental investigation. Journal of Physical Chemistry B, 2011, 115(30): 9345–9351

    Article  CAS  Google Scholar 

  72. Székely G, Valtcheva I B, Kim J F, Livingston A G. Molecularly imprinted organic solvent nanofiltration membranes—revealing molecular recognition and solute. Reactive & Functional Polymers, 2015, 86: 215–224

    Article  Google Scholar 

  73. Székely G, Bandarra J, Heggie W, Sellergren B, Ferreira F C. A hybrid approach to reach stringent low genotoxic impurity contents in active pharmaceutical ingredients: combining molecularly imprinted polymers and organic solvent nanofiltration for removal of 1,3-diisopropylurea. Separation and Purification Technology, 2012, 86: 79–87

    Article  Google Scholar 

  74. Székely G, Bandarra J, Heggie W, Ferreira F C, Sellergren B. Design, preparation and characterization of novel molecularly imprinted polymers for removal of potentially genotoxic 1,3-diisopropylurea from API solutions. Separation and Purification Technology, 2012, 86: 190–198

    Article  Google Scholar 

  75. Voros V, Drioli E, Fonte C, Szekely G. Process intensification via continuous and simultaneous isolation of antioxidants: an upcycling approach for olive leaf waste. ACS Sustainable Chemistry & Engineering, 2019, 7(22): 18444–18452

    Article  CAS  Google Scholar 

  76. Dima S O, Sarbu A, Dobre T, Bradu C, Antohe N, Radu A L, Nicolescu T V, Lungu A. Molecularly imprinted membranes for selective separations. Materiale Plastice, 2009, 46(4): 372–378

    CAS  Google Scholar 

  77. Benghuzzi H, Tucci M, Eckie R, Hughes J. The effects of sustained delivery of diosgenin on the adrenal gland of female rats. Biomedical Sciences Instrumentation, 2003, 39: 335–340

    CAS  PubMed  Google Scholar 

  78. Cui J, Wu Y, Meng M, Lu J, Wang C, Zhao J, Yan Y. Bio-inspired synthesis of molecularly imprinted nanocomposite membrane for selective recognition and separation of artemisinin. Journal of Applied Polymer Science, 2016, 133(19): 1–9

    Article  Google Scholar 

  79. Cheng H, Zhu X, Yang S, Wu Y, Cao Q, Ding Z. A pH-controllable imprinted composite membrane for selective separation of podophyllotoxin and its analog. Journal of Applied Polymer Science, 2013, 128(1): 363–370

    Article  CAS  Google Scholar 

  80. Del Blanco S G, Donato L, Drioli E. Development of molecularly imprinted membranes for selective recognition of primary amines in organic medium. Separation and Purification Technology, 2012, 87: 40–46

    Article  CAS  Google Scholar 

  81. De Luca G, Donato L, Tasselli F, Del Blanco S G, Bisignano F, Drioli E. Nanofiltration and molecularly imprinted membranes: a theoretical study based on quantum mechanics approach. Procedia Engineering, 2012, 44: 1761–1762

    Article  Google Scholar 

  82. International Agency for Research on Cancer. Monograph: Overall Evaluations of Carcinogenicity to Humans. 2009

  83. Donato L, Tasselli F, de Luca G, Garcia del Blanco S, Drioli E. Novel hybrid molecularly imprinted membranes for targeted 4,4′-methylendianiline. Separation and Purification Technology, 2013, 116: 184–191

    Article  CAS  Google Scholar 

  84. Donato L, Greco M C, Drioli E. Preparation of molecularly imprinted membranes and evaluation of their performance in the selective recognition of dimethoate. Desalination and Water Treatment, 2011, 30(1–3): 171–177

    Article  CAS  Google Scholar 

  85. Kashani T, Jahanshahi M, Rahimpour A, Peyravi M. Nanopore molecularly imprinted polymer membranes for environmental usage: selective separation of 2,4-dichlorophenoxyacetic acid as a toxic herbicide from water. Polymer-Plastics Technology and Engineering, 2016, 55(16): 1700–1712

    Article  CAS  Google Scholar 

  86. Jung B K, Hasan Z, Jhung S H. Adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from water with a metal-organic framework. Chemical Engineering Journal, 2013, 234: 99–105

    Article  CAS  Google Scholar 

  87. Zhang W, Zhang Q, Wang R, Cui Y, Zhang X, Hong L. Preparation of molecularly imprinted composite membranes for inducing bergenin crystallization in supercritical CO2 and adsorption properties. Bulletin of the Korean Chemical Society, 2012, 33 (2): 703–706

    Article  CAS  Google Scholar 

  88. Liu Z, Lv Y, Gao J, Li X, Zhai X, Zhao J, Xu X. Molecularly imprinted poly(MAA-co-AM) composite membranes for selective recognition of nicosulfuron herbicide. Journal of Applied Polymer Science, 2012, 126(4): 1247–1256

    Article  CAS  Google Scholar 

  89. Zhang Y, Qian L, Yin W, He B, Liu F, Hou C, Huo D, Fa H. A dual read-out molecularly imprinted composite membrane sensor based on zinc porphyrin for the detection of dimethyl methylphosphonate. Chemical Research in Chinese Universities, 2016, 32(5): 725–730

    Article  Google Scholar 

  90. Gao B, Liu H, Cui K. Preparation and molecule-recognition characteristics of grafting type molecule-imprinted membrane and potentiometric sensor for atrazine. Sensors and Actuators. B, Chemical, 2018, 254: 1048–1056

    Article  CAS  Google Scholar 

  91. Barahona F, Diaz-Alvarez M, Turiel E, Martin-Esteban A. Molecularly imprinted polymer-coated hollow fiber membrane for the microextraction of triazines directly from environmental waters. Journal of Chromatography. A, 2016, 1442: 12–18

    Article  CAS  PubMed  Google Scholar 

  92. Chen J, Bai L, Tian M, Zhou X, Zhang Y. Hollow-fiber membrane tube embedded with a molecularly imprinted monolithic bar for the microextraction of triazine pesticides. Analytical Methods, 2014, 6 (2): 602–608

    Article  CAS  Google Scholar 

  93. Gkementzoglou C, Kotrotsiou O, Kiparissides C. Synthesis of novel composite membranes based on molecularly imprinted polymers for removal of triazine herbicides from water. Industrial & Engineering Chemistry Research, 2013, 52(39): 14001–14010

    Article  CAS  Google Scholar 

  94. Singh K P, Prajapati R K, Ahlawat S, Ahlawat S, Mungali M, Kumar S. Use of isoproturon imprinted polymer membranes as a selective recognition platform in a resistance based electrochemical sensor. Open Journal of Applied Biosensors, 2013, 2(01): 20–28

    Article  Google Scholar 

  95. Jing T, Xia H, Niu J, Zhou Y, Dai Q, Hao Q, Zhou Y, Mei S. Determination of trace 2,4-dinitrophenol in surface water samples based on hydrophilic molecularly imprinted polymers/nickel fiber electrode. Biosensors & Bioelectronics, 2011, 26(11): 4450–4456

    Article  CAS  Google Scholar 

  96. Cakir O, Yılmaz F M, Baysal Z, Denizli A. Preparation of a new quartz crystal microbalance sensor based on molecularly imprinted nanofilms for amitrole detection. Biointerface Research in Applied Chemistry, 2018, 410(18): 3435–3440

    Google Scholar 

  97. Xie C, Li H, Li S, Wu J, Zhang Z. Surface molecular self-assembly for organophosphate pesticide imprinting in electropolymerized poly(p-aminothiophenol) membranes on a gold nanoparticle modified glassy carbon electrode. Analytical Chemistry, 2010, 82 (1): 241–249

    Article  CAS  PubMed  Google Scholar 

  98. Cakir O. A molecularly imprinted nanofilm-based quartz crystal microbalance sensor for the real-time detection of pirimicarb. Journal of Molecular Recognition, 2019, 32(9): e2785

    Article  PubMed  Google Scholar 

  99. Zhang J, Wang C Y, Niu Y H, Li S J, Luo R Q. Electrochemical sensor based on molecularly imprinted composite membrane of poly(O-aminothiophenol) with gold nanoparticles for sensitive determination of herbicide simazine in environmental samples. Sensors and Actuators. B, Chemical, 2017, 249: 747–755

    Article  CAS  Google Scholar 

  100. Saylan Y, Akgönüllü S, Çimen D, Derazshamshir A, Bereli N, Yılmaz F M, Denizli A. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sensors and Actuators. B, Chemical, 2017, 241: 446–454

    Article  CAS  Google Scholar 

  101. Fu J, Chen L, Li J, Zhang Z. Current status and challenges of ion imprinting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(26): 13598–13627

    Article  CAS  Google Scholar 

  102. Zhai Y, Liu Y, Chang X, Ruan X, Liu J. Metal ion small molecule complex imprinted polymer membranes: preparation and separation characteristics. Reactive & Functional Polymers, 2008, 68(1): 284–291

    Article  CAS  Google Scholar 

  103. Suli L M, Ibrahim W H W, Aziz B A, Deraman M R, Ismail N A. A review of rare earth mineral processing technology. Chemical Engineering Research Bulletin, 2017, 19: 20–35

    Article  Google Scholar 

  104. Balaram V. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 2019, 10(4): 1285–1303

    Article  CAS  Google Scholar 

  105. Pereao O, Bode-Aluko C, Fatoba O, Laatikaine K, Petrik L. Rare earth elements removal techniques from water/wastewater: a review. Desalination and Water Treatment, 2018, 130: 71–86

    Article  CAS  Google Scholar 

  106. Chen W, Ma Y, Pan Y, Meng Z, Pan G, Sellergren B. Molecularly imprinted polymers with stimuli-responsive affinity: progress and perspectives. Polymers, 2015, 7(9): 1689–1715

    Article  CAS  Google Scholar 

  107. Liu E, Xu X, Zheng X, Zhang F, Liu E, Li C. An ion imprinted macroporous chitosan membrane for efficiently selective adsorption of dysprosium. Separation and Purification Technology, 2017, 189: 288–295

    Article  CAS  Google Scholar 

  108. Zheng X, Zhang Y, Zhang F, Li Z, Yan Y. Dual-template docking oriented ionic imprinted bilayer mesoporous films with efficient recovery of neodymium and dysprosium. Journal of Hazardous Materials, 2018, 353: 496–504

    Article  CAS  PubMed  Google Scholar 

  109. Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S G, Liu J P. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Advanced Materials, 2011, 23 (7): 821–842

    Article  CAS  PubMed  Google Scholar 

  110. Zheng X, Zhang F, Liu E, Xu X, Yan Y. Efficient recovery of neodymium in acidic system by free-standing dual-template docking oriented ionic imprinted mesoporous films. ACS Applied Materials & Interfaces, 2017, 9(1): 730–739

    Article  CAS  Google Scholar 

  111. Zheng X, Zhang Y, Bian T, Zhang Y, Zhang F, Yan Y. Selective extraction of gadolinium using free-standing imprinted mesoporous carboxymethyl chitosan films with high capacity. Cellulose (London, England), 2019, 26(2): 1209–1219

    CAS  Google Scholar 

  112. Zheng X, Liu E, Zhang F, Dai J, Yan Y, Li C. Selective adsorption and separation of gadolinium with three-dimensionally interconnected macroporous imprinted chitosan films. Cellulose (London, England), 2017, 24(2): 977–988

    CAS  Google Scholar 

  113. Lu J, Wu Y, Lin X, Gao J, Dong H, Li C, Qin Y, Wang L, Yan Y. Anti-fouling and thermosensitive ion-imprinted nanocomposite membranes based on grapheme oxide and silicon dioxide for selectively separating europium ions. Journal of Hazardous Materials, 2018, 353: 244–253

    Article  CAS  PubMed  Google Scholar 

  114. Kohfahl C, Post V E A, Hamann E, Prommer H, Simmons C T. Validity and slopes of the linear equation of state for natural brines in salt lake systems. Journal of Hydrology (Amsterdam), 2015, 523: 190–195

    Article  CAS  Google Scholar 

  115. Fu Y, Zhong H. Research situation of separating magnesium and lithium from high Mg/Li ratio from salt lake brine. Multipurpose Utilization of Mineral Resourches, 2010, 2: 30–32

    Google Scholar 

  116. Lu J, Qin Y, Zhang Q, Wu Y, Cui J, Li C, Wang L, Yan Y. Multilayered ion-imprinted membranes with high selectivity towards Li based on synergistic effect of 12-crown-4 and polyether sulfone. Applied Surface Science, 2018, 427: 931–941

    Article  CAS  Google Scholar 

  117. Sun D, Zhu Y, Meng M, Qiao Y, Yan Y, Li C. Fabrication of highly selective ion imprinted macroporous membranes with crown ether for targeted separation of lithium ion. Separation and Purification Technology, 2017, 175: 19–26

    Article  CAS  Google Scholar 

  118. Sun D, Meng M, Qiao Y, Zhao Y, Yan Y, Li C. Synthesis of ion imprinted nanocomposite membranes for selective adsorption of lithium. Separation and Purification Technology, 2018, 194: 64–72

    Article  CAS  Google Scholar 

  119. Cui J, Zhang Y, Wang Y, Ding J, Yu P, Yan Y, Li C, Zhou Z. Fabrication of lithium ion imprinted hybrid membranes with antifouling performance for selective recovery of lithium. New Journal of Chemistry, 2018, 42(1): 118–128

    Article  CAS  Google Scholar 

  120. Cui J, Zhou Z, Xie A, Liu S, Wang Q, Wu Y, Yan Y, Li C. Facile synthesis of degradable CA/CS imprinted membrane by hydrolysis polymerization for effective separation and recovery of Li+. Carbohydrate Polymers, 2019, 205: 492–499

    Article  CAS  PubMed  Google Scholar 

  121. Lu Y, Sun D, Lu Y, Yan Y, Hu B. Zwitterionic imprinted composite membranes with obvious antifouling character for selective separation of Li ions. Korean Journal of Chemical Engineering, 2020, 37(4): 707–715

    Article  CAS  Google Scholar 

  122. Wang Y, Xu J, Yang D, Zhang T, Qiu F, Pan J. Calix arenes functionalized dual-imprinted mesoporous film for the simultaneous selective recovery of lithium and rubidium. Applied Organometallic Chemistry, 2018, 32(10): e4511

    Article  Google Scholar 

  123. Du X, Zhang H, Hao X, Guan G, Abudula A. Facile preparation of ion-imprinted composite film for selective electrochemical removal of nickel(II) ions. ACS Applied Materials & Interfaces, 2014, 6(12): 9543–9549

    Article  CAS  Google Scholar 

  124. Vatanpour V, Madaeni S S, Zinadini S, Rajabi H R. Development of ion-imprinted technique for designing nickel ion selective membrane. Journal of Membrane Science, 2011, 373(1–2): 36–42

    Article  CAS  Google Scholar 

  125. Zeng J, Zeng J, Zhou H, Liu G, Yuan Z, Jian J. Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewater. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1018–1028

    Article  CAS  Google Scholar 

  126. Mokhtar M, Dickson S E, Kim Y, Mekky W. Preparation and characterization of ion selective membrane and its application for Cu2+ removal. Journal of Industrial and Engineering Chemistry, 2018, 60: 475–484

    Article  CAS  Google Scholar 

  127. Deng H, Gao L, Zhang S, Yuan J. Preparation of a copper ion selective membrane by surface modified molecular imprinting. Industrial & Engineering Chemistry Research, 2012, 51(43): 14018–14025

    Article  CAS  Google Scholar 

  128. Deng H, Zhao S, Meng Q, Zhang W, Hu B. A novel surface ion-imprinted cation-exchange membrane for selective separation of copper Ion. Industrial & Engineering Chemistry Research, 2014, 53(39): 15230–15236

    Article  CAS  Google Scholar 

  129. Zarghami S, Kazemimoghadam M, Mohammadi T. Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique. Chemical Papers, 2014, 68(6): 809–815

    Article  CAS  Google Scholar 

  130. Zarghami S, Mohammadi T, Kazemimoghadam M. Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes. Chemical Papers, 2014, 68(10): 1325–1331

    Article  CAS  Google Scholar 

  131. He J, Chen J P. Cu(II)-imprinted poly(vinyl alcohol)/poly(acrylic acid) membrane for greater enhancement in sequestration of copper ion in the presence of competitive heavy metal ions: material development, process demonstration, and study of mechanisms. Industrial & Engineering Chemistry Research, 2014, 53(52): 20223–20233

    Article  CAS  Google Scholar 

  132. Zeng J, Zhang Z, Zhou H, Liu G, Liu Y, Zeng L, Jian J, Yuan Z. Ion-imprinted poly(methyl methacrylate-vinyl pyrrolidone)/poly (vinylidene fluoride) blending membranes for selective removal of ruthenium(III) from acidic water solutions. Polymers for Advanced Technologies, 2019, 30(7): 1865–1877

    Article  CAS  Google Scholar 

  133. Zeng J, Zhang Z, Dong Z, Ren P, Li Y, Liu X. Fabrication and characterization of an ion-imprinted membrane via blending poly (methyl methacrylate-co-2-hydroxyethyl methacrylate) with polyvinylidene fluoride for selective adsorption of Ru(III). Reactive & Functional Polymers, 2017, 115: 1–9

    Article  CAS  Google Scholar 

  134. Lv X, Liu Y, Zhang J, Zhao M, Zhu K. Study on the adsorption behavior of glutaric acid modified Pb(II)-imprinted chitosan-based composite membrane to Pb(II) in aqueous solution. Materials Letters, 2019, 251: 72–175

    Article  Google Scholar 

  135. Li Y, Zhang J, Xu C, Zhou Y F. Crosslinked chitosan nanofiber materials fabricated by one-step electrospinning and ion imprinting methods for metal ions. Science China. Chemistry, 2016, 59(1): 95–105

    Article  CAS  Google Scholar 

  136. Fu X C, Wu J, Nie L, Liu J H, Huang X J. Electropolymerized surface ion imprinting films on a gold nanoparticles/single-wall carbon nanotube nanohybrids modified glassy carbon electrode for electrochemical detection of trace mercury(II) in water. Analytica Chimica Acta, 2012, 720: 29–37

    Article  CAS  PubMed  Google Scholar 

  137. Huang K, Chen Y, Zhou F, Zhao X, Liu J, Mei S, Zhou Y, Jing T. Integrated ion imprinted polymers-paper composites for selective and sensitive detection of Cd(II) ions. Journal of Hazardous Materials, 2017, 333: 137–143

    Article  CAS  PubMed  Google Scholar 

  138. Wang X W, Zhang L, Ma C L, Song R Y, Hou H B, Li D L. Enrichment and separation of silver from waste solutions by metal ion imprinted membrane. Hydrometallurgy, 2009, 100(1–2): 82–86

    Article  CAS  Google Scholar 

  139. Zeng J, Lv C, Liu G, Zhang Z, Dong Z, Liu J Y, Wang Y. A novel ion-imprinted membrane induced by amphiphilic block copolymer for selective separation of Pt(IV) from aqueous solutions. Journal of Membrane Science, 2019, 572: 428–441

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Donato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donato, L., Drioli, E. Imprinted membranes for sustainable separation processes. Front. Chem. Sci. Eng. 15, 775–792 (2021). https://doi.org/10.1007/s11705-020-1991-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1991-0

Keywords

Navigation