Skip to main content
Log in

A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A flexible, multi-site tactile and thermal sensor (MTTS) based on polyvinylidene fluoride (resolution 50 50) is reported. It can be used to implement spatial mapping caused by tactile and thermal events and record the two-dimensional motion trajectory of a tracked target object. The output voltage and current signal are recorded as a mapping by sensing the external pressure and thermal radiation stimulus, and the response distribution is dynamically observed on the three-dimensional interface. Through the mapping relationship between the established piezoelectric and pyroelectric signals, the piezoelectric component and the pyroelectric component are effectively extracted from the composite signals. The MTTS has a good sensitivity for tactile and thermal detection, and the electrodes have good synchronism. In addition, the signal interference is less than 9.5% and decreases as the pressure decreases after the distance between adjacent sites exceeds 200 mm. The integration of MTTS and signal processing units has potential applications in human-machine interaction systems, health status detection and smart assistive devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo H, Pu X, Chen J, Meng Y, Yeh M, Liu G, Tang Q, Chen B, Liu D, Qi S, et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Science Robotics, 2018, 3(20): UNSP eaat2516

    Google Scholar 

  2. Yang Y, Zhang H, Zhong X, Yi F, Yu R, Zhang Y, Wang Z. Electret film-enhanced triboelectric nanogenerator matrix for self-powered instantaneous tactile imaging. ACS Applied Materials & Interfaces, 2014, 6(5): 3680–3688

    CAS  Google Scholar 

  3. Wang X, Song W, You M, Zhang J, Yu M, Fan Z, Ramakrishna S, Long Y. Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano, 2018, 12(8): 8588–8596

    CAS  PubMed  Google Scholar 

  4. Shirdar M R, Farajpour N, Shahbazian-Yassar R, Shokuhfar T. Nanocomposite materials in orthopedic applications. Frontiers of Chemical Science and Engineering, 2019, 13(1): 1–13

    Google Scholar 

  5. Wu Z, Ding W, Dai Y, Dong K, Wu C, Zhang L, Lin Z, Cheng J, Wang Z. Self-powered multifunctional motion sensor a, enabled by magnetic-regulated triboelectric nanogenerator. ACS Nano, 2018, 12(6): 5726–5733

    CAS  PubMed  Google Scholar 

  6. Ma M, Zhang Z, Liao Q, Yi F, Han L, Zhang G, Liu S, Liao X, Zhang Y. Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy, 2017, 32: 389–396

    CAS  Google Scholar 

  7. Yuan Z, Zhou T, Yin Y, Cao R, Li C, Wang Z. Transparent and flexible triboelectric sensing array for touch security applications. ACS Nano, 2017, 11(8): 8364–8369

    CAS  PubMed  Google Scholar 

  8. Zhang C, Lu C, Bi S, Hou Y, Zhang F, Cai M, He Y, Paasch S, Feng X, Brunner E, Zhuang X. S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion. Frontiers of Chemical Science and Engineering, 2018, 12(3): 346–357

    CAS  Google Scholar 

  9. Wang L, Yan R, Saha T, Wang K. A Distributed inter-phase coordination algorithm for voltage control with unbalanced PV integration in LV systems. IEEE Transactions on Sustainable Energy, 2020

    Google Scholar 

  10. Zhang Q, Deng X, Qian P, Wang X. Spatial modeling for refining and predicting surface potential mapping with enhanced resolution. Nanoscale, 2013, 5(3): 921–926

    CAS  PubMed  Google Scholar 

  11. Han C, Zhang C, Li X, Zhang L, Zhou T, Hu W, Wang Z. Self-powered velocity and trajectory tracking sensor array made of planar triboelectric nanogenerator pixels. Nano Energy, 2014, 9: 325–333

    Google Scholar 

  12. Wang X, Yu J, Zhang J, Yan X, Song C, Long Y, Ruan K, Li X. Structural evolution, magnetization enhancement, and ferroelectric properties of Er3+-doped SmFeO3. Ceramics International, 2017, 43 (18): 16903–16908

    CAS  Google Scholar 

  13. Lee J S, Shin K Y, Cheong Q J, Kim J H, Jang J. Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring. Scientific Reports, 2015, 5(1): 7887

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Xia K, Du C, Zhu Z, Wang R, Zhang H, Xu Z. Sliding-mode triboelectric nanogenerator based on paper and as a self-powered velocity and force sensor. Applied Materials Today, 2018, 13: 190–197

    Google Scholar 

  15. Guo H, Jia X, Liu L, Cao X, Wang N, Wang Z. Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning. ACS Nano, 2018, 12(4): 3461–3467

    CAS  PubMed  Google Scholar 

  16. Bai P, Zhu G, Jing Q, Yang J, Chen J, Su Y, Ma J, Zhang G, Wang Z. Membrane-based self-powered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring. Advanced Functional Materials, 2014, 24(37): 5807–5813

    CAS  Google Scholar 

  17. Li W, Duan J, Zhong J, Wu N, Lin S, Xu Z, Chen S, Pan Y, Huang L, Hu B, Zhou J. Flexible THV/COC piezoelectret nanogenerator for wide-range pressure sensing. ACS Applied Materials & Interfaces, 2018, 10(35): 29675–29683

    CAS  Google Scholar 

  18. Rasel M S, Maharjan P, Salauddin M, Rahman M T, Cho H O, Kim J W, Park J Y. An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy, 2018, 49: 603–613

    CAS  Google Scholar 

  19. Guo W, Tan C, Shi K, Li J, Wang X, Sun B, Huang X, Long Y, Jiang P. Wireless piezoelectric devices based on electrospun PVDF/ BaTiO3 NW nanocomposite fibers for human motion monitoring. Nanoscale, 2018, 10(37): 17751–17760

    CAS  PubMed  Google Scholar 

  20. Wang K, Pang J, Li L, Zhou S, Li Y, Zhang T. Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation. Frontiers of Chemical Science and Engineering, 2018, 12(3): 376–382

    CAS  Google Scholar 

  21. Wang K, Li L, Zhang T, Liu Z. Nitrogrn-doped graphene for supercapacitor with long-term electrochemocal stability. Energy, 2014, 70: 612–617

    CAS  Google Scholar 

  22. Zhou Y, Huang Y, Pang J, Wang K. Remaining useful life prediction for supercapacitor based on long short-term memory neural network. Journal of Power Sources, 2019, 440: 227149

    CAS  Google Scholar 

  23. Wang K, Li L, Xue W, Zhou S, Lan Y, Zhang H, Sui Z. Electrodeposition synthesis of PANI/MnO2/graphene composite materials and its electrochemical performance. International Journal of Electrochemical Science, 2017, 12(9): 8306–8314

    CAS  Google Scholar 

  24. Wu L, Han Y, Zhang Q, Zhao S. Effect of external electric field on nanobubbles at the surface of hydrophobic particles during air flotation. RSC Advances, 2019, 9(4): 1792–1798

    CAS  Google Scholar 

  25. Goswami A, Gawande M B. Phosphorene: Current status, challenges and opportunities. Frontiers of Chemical Science and Engineering, 2019, 13(2): 296–309

    Google Scholar 

  26. Yan Y, Wang L, Xiao J, Zhang X, Wang Y, Liu C, Zhang H, Liu C, Xia Y, Sui K, et al. Synchronous enhancement and stabilization of graphene oxide liquid crystals: Inductive effect of sodium alginates in different concentration zones. Polymer, 2019, 160: 107–114

    Google Scholar 

  27. Wang Q, Ju J, Tan Y, Hao L, Ma Y, Wu Y, Zhang H, Xia Y, Sui K. Controlled synthesis of sodium alginate electrospun nanofiber membranes for multi-occasion adsorption and separation of methylene blue. Carbohydrate Polymers, 2019, 205: 125–134

    CAS  PubMed  Google Scholar 

  28. Qiu H, Song W, Wang X, Zhang J, Fan Z, Yu M, Ramakrishna S, Long Y. A calibration-free self-powered sensor for vital sign monitoring and finger tap communication based on wearable triboelectric nanogenerator. Nano Energy, 2019, 58: 536–542

    CAS  Google Scholar 

  29. Yuan D, Zhang C, Tang S, Li X, Tang J, Rao Y, Wang Z, Zhang Q. Enhancing CaO2 fenton-like process by Fe(II)-oxalic acid com-plexation for organic wastewater treatment. Water Research, 2019, 163: 114861

    CAS  PubMed  Google Scholar 

  30. Zhou Y, Wang Y, Wang K, Kang L, Peng F, Wang L, Pang J. Hybrid genetic algorithm method for efficient and robust evluation of remaining useful life of supercapacitors. Applied Energy, 2020, 260: 114169

    Google Scholar 

  31. Bonitz M, Filinov A, Abraham J, Balzer K, Kahlert H, Pehlke E, Bronold F, Pamperin M, Becker M, Loffhagen D, Fehske H. Towards an integrated modeling of the plasma-solid interface. Frontiers of Chemical Science and Engineering, 2019, 13(2): 201–237

    Google Scholar 

  32. Wang K, Zhou S, Zhou Y, Ren Y, Li L, Lan Y. Synthesis of porous carbon by activation method and its electrochemical performance. International Journal of Electrochemical Science, 2018, 13(11): 10766–10773

    Google Scholar 

  33. Zhang Q, Han Y, Wu L. Influence of electrostatic field on the adsorption of phenol on single-walled carbon nanotubes: A study by molecular dynamics simulation. Chemical Engineering Journal, 2019, 363: 278–284

    CAS  Google Scholar 

  34. Li T, Zou J, Xing F, Zhang M, Cao X, Wang N, Wang Z. From dual-mode triboelectric nanogenerator to smart tactile sensor: A multiplexing design. ACS Nano, 2017, 11(4): 3950–3965

    CAS  PubMed  Google Scholar 

  35. Hokmabad V R, Davaran S, Aghazadeh M, Alizadeh E, Salehi R, Ramazani A. Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering. Frontiers of Chemical Science and Engineering, 2019, 13(1): 108–119

    CAS  Google Scholar 

  36. Xia K, Zhu Z, Zhang H, Du C, Xu Z, Wang R. Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion. Nano Energy, 2018, 50: 571–580

    CAS  Google Scholar 

  37. Wang K, Li L, Lan Y, Dong P, Xia G. Application research of chaotic carrier frequency modulation technology in two-stage matrix converter. Mathematical Problems in Engineering, 2019, 2019: 2614327

    Google Scholar 

  38. Tang S, Wang Z, Yuan D, Zhang Y, Qi J, Rao Y, Lu G, Li B, Wang K, Yin K. Enhanced photocatalytic performance of BiVO4 for degradation of methylene blue under LED visible light irradiation assisted by peroxymonosulfate. International of Electrochemical Science, 2020, 15(3): 2470–2480

    CAS  Google Scholar 

  39. Xia G, Li C, Wang K, Li L. Structural design and electrochemical performance of PANI/CNTs and MnO2/CNTs supercapacitor. Science of Advanced Materials, 2019, 11(8): 1079–1086

    CAS  Google Scholar 

  40. Yang K, Wang J, Yurchenko D. A double-beam piezo-magneto-elatic wind energy harvester for improving the galloping-based energy harvesting. Applied Physics Letters, 2019, 115(19): 193901

    Google Scholar 

  41. Hu G, Wang J, Su Z, Li G, Peng H, Kwok K C S. Performance evaluation of twin piezoelectric wind energy harvesters under mutual interference. Applied Physics Letters, 2019, 115(7): 073901

    Google Scholar 

  42. Wang Q, Dou X, Chen X, Zhao Z, Wang S, Wang Y, Sui K, Tan Y, Gong Y, Zhang Y, et al. Reevaluating the protein emission: remarkable visible luminescence and emissive mechanism. Ange-wandte Chemie International Edition, 2019, 58: 12667–12673

    CAS  Google Scholar 

  43. Maharjan P, Toyabur R M, Park J Y. A human locomotion inspired hybrid nanogenerator for wrist-wearable electronic device and sensor applications. Nano Energy, 2018, 46: 383–395

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Shandong Science and Technology Development Plan (No. GG201809230040), the National Natural Science Foundation of China (Grant Nos. 61573202 and 11847135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, G., Huang, Y., Li, F. et al. A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging. Front. Chem. Sci. Eng. 14, 1039–1051 (2020). https://doi.org/10.1007/s11705-019-1901-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1901-5

Keywords

Navigation