Skip to main content
Log in

Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Hierarchical core/shell Zeolite Socony Mobil-five (ZSM-5) zeolite was hydrothermally postsythesized in the solution of NaOH and diammonium surfactant via a dissolution-reassembly strategy. The silica and alumina species were firstly dissolved partially from the bulky ZSM-5 crystals and then were in situ reassembled into the MFI-type nanosheets with the structure-directing effect of diammonium surfactant, attaching to the out-surface of ZSM-5 core crystals. The mesopores thus were generated in both the core and shell part, giving rise to a micropore/mesopore composite material. The micropore volume and the acidity of the resultant hybrid were well-preserved during this in situ recrystallization process. Possessing the multiple mesopores and enlarged external surface area, the core/shell ZSM-5 zeolite exhibited higher activity in the ketalation and acetalization reactions involving bulky molecules in comparison to the pristine ZSM-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corma A, Martinez A. Zeolites and zeotypes as catalysts. Advanced Materials, 1995, 7(2): 137–144

    CAS  Google Scholar 

  2. Wei Z H, Xia T F, Liu M H, Cao Q S, Xu Y R, Zhu K K, Zhu X D. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration. Frontiers of Chemical Science and Engineering, 2015, 9(4): 450–460

    CAS  Google Scholar 

  3. Feng C, Khulbe K, Matsuura T, Farnood R, Ismail A, Membr J. Recent progress in zeolite/zeotype membranes. Journal of Membrane Science and Research, 2015, 1(2): 49–72

    Google Scholar 

  4. Weckhuysen B M, Yu J H. Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews, 2015, 44(20): 7022–7024

    CAS  PubMed  Google Scholar 

  5. Cnudde P, De Wispelaere K, Vanduyfhuys L, Demuynck R, Van der Mynsbrugge J, Waroquier M, Van Speybroeck V. How chain length and branching influence the alkene cracking reactivity on H-ZSM-5. ACS Catalysis, 2018, 8(10): 9579–9595

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 1997, 97(6): 2373–2420

    CAS  PubMed  Google Scholar 

  7. Tarach K A, Pyra K, Siles S, Cabrera M, Marek K G. Operando study reveals the superior cracking activity and stability of hierarchical ZSM-5 catalyst for the cracking of low-density polyethylene. ACS Sustainable Chemistry & Engineering, 2018, 12(3): 633–638

    Google Scholar 

  8. Hartmann M. Hierarchical zeolites: A proven strategy to combine shape selectivity with efficient mass transport. Angewandte Chemie International Edition, 2004, 43(44): 5880–5882

    CAS  PubMed  Google Scholar 

  9. Tago T, Konno H, Nakasaka Y, Masuda T. Size-controlled synthesis of nano-zeolites and their application to light olefin synthesis. Catalysis Surveys from Asia, 2012, 16(3): 148–163

    CAS  Google Scholar 

  10. Wang D R, Zhang L, Chen L, Wu H H, Wu P. Postsynthesis of mesoporous ZSM-5 zeolite by piperidine-assisted desilication and its superior catalytic properties in hydrocarbon cracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3511–3521

    CAS  Google Scholar 

  11. Xu S M, Zhang X X, Cheng D G, Chen F Q, Ren X H. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789

    CAS  Google Scholar 

  12. Zhu J, Meng X J, Xiao F S. Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion. Frontiers of Chemical Science and Engineering, 2013, 7(2): 233–248

    CAS  Google Scholar 

  13. Möller K, Bein T. Mesoporosity—a new dimension for zeolites. Chemical Society Reviews, 2013, 42(9): 3689–3707

    PubMed  Google Scholar 

  14. Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117

    CAS  Google Scholar 

  15. Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube template growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–1418

    CAS  Google Scholar 

  16. Tao Y, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society, 2003, 125(20): 6044–6045

    CAS  PubMed  Google Scholar 

  17. Xiao F S, Wang L F, Yin C Y, Lin K F, Di Y, Li J X, Xu R R, Su D S, Schlögl R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites template with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie International Edition, 2006, 118(19): 3162–3165

    Google Scholar 

  18. Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporousity. Nature Materials, 2006, 5(3): 718–723

    CAS  PubMed  Google Scholar 

  19. Chen H Y, Yang M F, Shang W J, Tong Y, Liu B Y, Han X L, Zhang J B, Hao Q Q, Sun M, Ma X X. Organosilane Surfactant-directed synthesis of hierarchical ZSM-5 zeolites with improved catalytic performance in methanol-to-propylene reaction. Industrial & Engineering Chemistry Research, 2018, 57(32): 10956–10966

    CAS  Google Scholar 

  20. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(8288): 246–249

    CAS  PubMed  Google Scholar 

  21. Donk S V, Janssen A H, Bitter J H, Jong K P. Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews, 2003, 45(2): 297–319

    Google Scholar 

  22. Song B D, Li Y Q, Cao G, Sun Z H, Han X. The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction. Frontiers of Chemical Science and Engineering, 2017, 11(4): 564–574

    CAS  Google Scholar 

  23. Sadowska K, Wach A, Olejniczak Z, Kuśtrowski P, Datka J. Hierarchic zeolites: Zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Microporous and Mesoporous Materials, 2013, 167(14): 82–88

    CAS  Google Scholar 

  24. Verboekend D, Ramirez J P. Desilication mechanism revisited: Highly mesoporous all-silica zeolites enabled through pore-directing agents. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(4): 1137–1147

    CAS  Google Scholar 

  25. Ramírez J P, Verboekend D, Bonilla A, Abello S. Zeolite catalysts with tunable hierarchy factor by pore-growth moderators. Advanced Functional Materials, 2009, 19(23): 3972–3979

    Google Scholar 

  26. Han Y, Pitukmanorom P, Zhao L, Ying J Y. Generalized synthesis of mesoporous shells on zeolite crystals. Small, 2011, 7(3): 326–332

    CAS  PubMed  Google Scholar 

  27. Wang D R, Xu L, Wu P. Hierarchical, core/shell meso-ZSM-5@mesoporous aluminosilicate-supported Pt nanoparticles for bifunctional hydrocracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(37): 15535–15545

    CAS  Google Scholar 

  28. Peng P, Sun S Z, Liu Y X, Liu X M, Mintova S, Yan Z F. Combined alkali dissolution and re-assembly approach toward ZSM-5 mesostructures with extended lifetime in cumene cracking. Journal of Colloid and Interface Science, 2018, 529(9): 283–293

    CAS  PubMed  Google Scholar 

  29. Zuo Y, Song W, Dai C, He Y, Wang M, Wang X, Guo X. Modification of small-crystal titanium silicalite-1 with organic bases: Recrystallization and catalytic properties in the hydroxylation of phenol. Applied Catalysis A, General, 2013, 453(32): 272–279

    CAS  Google Scholar 

  30. Li C G, Lu Y Q, Wu H H, Wu P, He M Y. A hierarchically core/shell-structured titanosilicate with multiple mesopore systems for highly efficient epoxidation of alkenes. Chemical Communications, 2015, 51(80): 14905–14908

    CAS  PubMed  Google Scholar 

  31. Xue T, Wang Y M, He M Y. Synthesis of ultra-high-silica ZSM-5 zeolites with tunable crystal sizes. Solid State Sciences, 2012, 14(4): 409–418

    CAS  Google Scholar 

  32. Astorino E, Peri J B, Willey R J, Busca G. Spectroscopic characterization of silicalite-1 and titanium silicalite-1. Journal of Catalysis, 1995, 157(2): 482–500

    CAS  Google Scholar 

  33. Zecchina A, Bordiga S, Spoto G, Marchese L, Petrini G, Leofanti G, Padoan M. Silicalite characterization. 2. IR spectroscopy of the interaction of carbon monoxide with internal and external hydroxyl groups. Journal of Physical Chemistry, 1992, 96(12): 4991–4997

    CAS  Google Scholar 

  34. Kustov L M, Kazansky V B, Beran S, Kubelkova L, Jiru P. Adsorption of carbon monoxide on ZSM-5 zeolites. Infrared spectroscopic study and quantum-chemical calculations. Journal of Physical Chemistry, 1987, 91(20): 5247–5251

    CAS  Google Scholar 

  35. Wu P, Komatsu T, Yashima T I R. IR and MAS NMR studies on the incorporation of aluminum atoms into defect sites of dealuminated mordenites. Journal of Physical Chemistry, 1995, 99(27): 10923–10931

    CAS  Google Scholar 

  36. Zecchina A, Bordiga S, Spoto G, Scarano D, Petrini G, Leofanti G, Padovan M, Arean C O. Low-temperature Fourier-transform infrared investigation of the interaction of CO with nanosized ZSM5 and silicalite. Journal of the Chemical Society, Faraday Transactions, 1992, 88(19): 2959–2967

    CAS  Google Scholar 

  37. Parry P E. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. Journal of Catalysis, 1963, 2(5): 371–379

    CAS  Google Scholar 

  38. Franke M E, Simon U. Solvate-supported proton transport in zeolites. Physical Chemistry Chemical Physics, 2004, 5(4): 465–472

    CAS  Google Scholar 

  39. Suzuki K, Aovagi Y, Katada N, Choi M, Ryoo R, Niwa M. Acidity and catalytic activity of mesoporous ZSM-5 in comparison with zeolite ZSM-5, Al-MCM-41 and silica-alumina. Catalysis Today, 2008, 132(1–4): 38–45

    CAS  Google Scholar 

  40. Singh B K, Xu D D, Han L, Ding J, Wang Y M, Che S A. Synthesis of single-crystalline mesoporous ZSM-5 with three-dimensional pores via the self-assembly of a designed triply branched cationic surfactant. Chemistry of Materials, 2014, 26(24): 7183–7188

    CAS  Google Scholar 

  41. Jung J W, Jo C B, Mota F M, Cho J, Ryoo R. Acid catalytic function of mesopore walls generated by MFI zeolite desilication in comparison with external surfaces of MFI zeolite nanosheet. Applied Catalysis A, General, 2015, 492(8): 68–75

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Ministry of Science and Technology of China (Grant No. 2016YFA0202804) and the National Natural Science Foundation of China (Grant Nos. 21872052, 21533002, 21571128 and 21603075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Xu or Peng Wu.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, P., Guan, Y., Xu, H. et al. Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions. Front. Chem. Sci. Eng. 14, 258–266 (2020). https://doi.org/10.1007/s11705-019-1878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1878-0

Keywords

Navigation