Skip to main content
Log in

Enhanced desulfurization performance of hybrid membranes using embedded hierarchical porous SBA-15

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The utilization of materials with a hierarchical porous structure as multi-functional additives is highly attractive in the preparation of hybrid membranes. In this study, novel hybrid membranes are designed by embedding hierarchical porous Santa Barbara Amorphous 15 (SBA-15) with a dual-pore architecture (micropores and mesopores) for pervaporation desulfurization. The SBA-15 with cylindrical mesopores provides molecular transport expressways to ensure improved permeability, while micropores on the wall have molecular sieving effects that are essential for the enhancement of permselectivity of thiophene molecules. Considering thiophene/n-octane mixture as a model system, the hybrid membrane with embedded 6 wt-% SBA-15 exhibits optimal pervaporation desulfurization performance with a permeation flux of 22.07 kg·m−2·h−1 and an enrichment factor of 6.76. Moreover, the detailed structure and properties of hybrid membranes are systematically characterized. This study demonstrates the immense potential of hierarchical porous materials as additives in membranes to simultaneously increase permeability and permselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiong J, Zhu W, Li H, Ding W, Chao Y, Wu P, Xun S, Zhang M, Li H. Few-layered graphene-like boron nitride induced a remarkable adsorption capacity for dibenzothiophene in fuels. Green Chemistry, 2015, 17(3): 1647–1656

    Article  CAS  Google Scholar 

  2. Voorde B V, Hezinová M, Lannoeye J, Vandekerkhove A, Marszalek B, Gil B, Beurroies I, Nachtigall P, Vos D D. Adsorptive desulfurization with CPO-27/MOF-74: An experimental and computational investigation. Physical Chemistry Chemical Physics, 2015, 17(16): 10759–10766

    Article  CAS  PubMed  Google Scholar 

  3. Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 2003, 86(1): 211–263

    Article  CAS  Google Scholar 

  4. Lin L, Zhang Y, Kong Y. Recent advances in sulfur removal from gasoline by pervaporation. Fuel, 2009, 88(10): 1799–1809

    Article  CAS  Google Scholar 

  5. Wu F, Lin L, Liu H, Liu H, Wang H, Qiu J, Zhang X. Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth. Journal of Membrane Science, 2017, 544(2): 342–350

    Article  CAS  Google Scholar 

  6. Shao P, Huang R Y M. Polymeric membrane pervaporation. Journal of Membrane Science, 2007, 287(2): 162–179

    Article  CAS  Google Scholar 

  7. Deng Y H, Chen J T, Chang C H, Liao K S, Tung K L, Price W E, Yamauchi Y, Wu K C W. A drying-free, water-based process for fabricating mixed-matrix membranes with outstanding pervaporation performance. Angewandte Chemie International Edition, 2016, 55(41): 12793–12796

    Article  PubMed  CAS  Google Scholar 

  8. Wang L, Wang N, Yang H, An Q, Li B, Ji S. Facile fabrication of mixed matrix membranes from simultaneously polymerized hyperbranched polymer/modified graphene oxide for MTBE/MeOH separation. Journal of Membrane Science, 2018, 559: 8–18

    Article  CAS  Google Scholar 

  9. Wang M, Wu H, Jin X, Yang C, He X, Pan F, Jiang Z, Wang C, Chen M, Zhang P, Cao X. Enhanced dehydration performance of hybrid membranes by incorporating fillers with hydrophilic-hydrophobic regions. Chemical Engineering Science, 2017, 178: 273–283

    Article  CAS  Google Scholar 

  10. Bae T H, Long J R. CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy & Environmental Science, 2013, 6(12): 3565–3569

    Article  CAS  Google Scholar 

  11. Yang D, Yang S, Jiang Z, Yu S, Zhang J, Pan F, Cao X, Wang B, Yang J. Polydimethyl siloxane-graphene nanosheets hybrid membranes with enhanced pervaporative desulfurization performance. Journal of Membrane Science, 2015, 487: 152–161

    Article  CAS  Google Scholar 

  12. Wang J, Li M, Zhou S, Xue A, Zhang Y, Zhao Y, Zhong J. Controllable construction of polymer/inorganic interface for poly (vinyl alcohol)/graphitic carbon nitride hybrid pervaporation membranes. Chemical Engineering Science, 2018, 181: 237–250

    Article  CAS  Google Scholar 

  13. Dong L X, Huang X C, Wang Z, Yang Z, Wang X M, Tang C Y. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles. Separation and Purification Technology, 2016, 166: 230–239

    Article  CAS  Google Scholar 

  14. Yu S, Jiang Z, Ding H, Pan F, Wang B, Yang J, Cao X. Elevated pervaporation performance of polysiloxane membrane using channels and active sites of metal organic framework CuBTC. Journal of Membrane Science, 2015, 481: 73–81

    Article  CAS  Google Scholar 

  15. Yu S, Pan F, Yang S, Ding H, Jiang Z, Wang B, Li Z, Cao X. Enhanced pervaporation performance of MIL-101(Cr) filled polysiloxane hybrid membranes in desulfurization of model gasoline. Chemical Engineering Science, 2015, 135: 479–488

    Article  CAS  Google Scholar 

  16. Choi J H, Jegal J, Kim W N. Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. Journal of Membrane Science, 2006, 284(1): 406–415

    Article  CAS  Google Scholar 

  17. Vu D Q, Koros W J, Miller S J. Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. Journal of Membrane Science, 2003, 211(2): 311–334

    Article  CAS  Google Scholar 

  18. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552

    Article  PubMed  CAS  Google Scholar 

  19. Okumuş E, Gürkan T, Yılmaz L. Effect of fabrication and process parameters on the morphology and performance of a PAN-based zeolite-filled pervaporation membrane. Journal of Membrane Science, 2003, 223(1): 23–38

    Article  CAS  Google Scholar 

  20. Pechar T W, Kim S, Vaughan B, Marand E, Tsapatsis M, Jeong H K, Cornelius C J. Fabrication and characterization of polyimide-zeolite L mixed matrix membranes for gas separations. Journal of Membrane Science, 2006, 277(1-2): 195–202

    Article  CAS  Google Scholar 

  21. Heiranian M, Farimani A B, Aluru N R. Water desalination with a single-layer MoS2 nanopore. Nature Communications, 2015, 6(1): 8616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Vatani M, Raisi A, Pazuki G. Mixed matrix membrane of ZSM-5/poly (ether-block-amide)/polyethersulfone for pervaporation separation of ethyl acetate from aqueous solution. Microporous and Mesoporous Materials, 2018, 263: 257–267

    Article  CAS  Google Scholar 

  23. Moermans B, Beuckelaer W D, Vankelecom I F J, Ravishankar R, Martens J A, Jacobs P A. Incorporation of nano-sized zeolites in membranes. Chemical Communications, 2000, 24(24): 2467–2468

    Article  Google Scholar 

  24. Bao M, Zhu G, Wang L, Wang M, Gao C. Preparation of monodispersed spherical mesoporous nanosilica-polyamide thin film composite reverse osmosis membranes via interfacial polymerization. Desalination, 2013, 309(3): 261–266

    Article  CAS  Google Scholar 

  25. Cheng X, Jiang Z, Cheng X, Yang H, Tang L, Liu G, Wang M, Wu H, Pan F, Cao X. Water-selective permeation in hybrid membrane incorporating multi-functional hollow ZIF-8 nanospheres. Journal of Membrane Science, 2018, 555: 146–156

    Article  CAS  Google Scholar 

  26. Pan F, Li W, Zhang Y, Sun J, Wang M, Wu H, Jiang Z. Hollow monocrystalline silicalite-1 hybrid membranes for efficient pervaporative desulfurization. AIChE Journal. American Institute of Chemical Engineers, 2019, 65(1):196–206

    Article  CAS  Google Scholar 

  27. Vattipalli V, Qi X, Dauenhauer P J, Fan W. Long walks in hierarchical porous materials due to combined surface and configurational diffusion. Chemistry of Materials, 2016, 28(21): 7852–7863

    Article  CAS  Google Scholar 

  28. Tseng H H, Itta A K, Weng T H, Li Y L. SBA-15/CMS composite membrane for H2, purification and CO2, capture: Effect of pore size, pore volume, and loading weight on separation performance. Microporous and Mesoporous Materials, 2013, 180(11): 270–279

    Article  CAS  Google Scholar 

  29. Weng T H, Tseng H H, Wey M Y. Effect of SBA-15 texture on the gas separation characteristics of SBA-15/polymer multilayer mixed matrix membrane. Journal of Membrane Science, 2011, 369(1): 550–559

    Article  CAS  Google Scholar 

  30. Niu Y, Wang H, Zhu X, Song Z, Xie X, Liu X, Han J G Q, Ge Q. Ru supported on zirconia-modified SBA-15 for selective conversion of cellobiose to hexitols. Microporous and Mesoporous Materials, 2014, 198(11): 215–222

    Article  CAS  Google Scholar 

  31. Liu W, Li Y, Meng X, Liu G, Hu S, Pan F, Wu H, Jiang Z, Wang B, Li Z, Cao X. Embedding dopamine nanoaggregates into a poly (dimethylsiloxane) membrane to confer controlled interactions and free volume for enhanced separation performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(11): 3713–3723

    Article  CAS  Google Scholar 

  32. Cheng M Y, Pan C J, Hwang B J. Highly-dispersed and thermally-stable NiO nanoparticles exclusively confined in SBA-15: Blockage-free nanochannels. Journal of Materials Chemistry, 2009, 19 (29): 5193–5200

    Article  CAS  Google Scholar 

  33. Ma X J, Yu Y J, Xing J L, Yang T Q, Lam K F, Xue Q S, Albela B, Bonneviot L, Zhang K. Tailoring porosity and dimensionality of Co3O4 nanophase using channel interconnectivity control by steaming of nanocasting SBA-15. Microporous and Mesoporous Materials, 2014, 200: 182–189

    Article  CAS  Google Scholar 

  34. Chen L, Zheng Z, Wang J, Wang J, Wang X. Mesoporous SBA-15 end-capped by PEG via L-cystine based linker for redox responsive controlled release. Microporous and Mesoporous Materials, 2014, 185: 7–15

    Article  CAS  Google Scholar 

  35. Kruk M, Jaroniec M, Ko C H, Ryoo R. Characterization of the porous structure of SBA-15. Chemistry of Materials, 2000, 12(7): 1961–1968

    Article  CAS  Google Scholar 

  36. Nafisi V, Hägg M B. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. Journal of Membrane Science, 2014, 459(1): 244–255

    Article  CAS  Google Scholar 

  37. Bondar V I, Freeman B D, Pinnau I. Gas sorption and characterization of poly(ether-b-amide) segmented block copolymers. Journal of Polymer Science. Part B, Polymer Physics, 2015, 37(17): 2463–2475

    Article  Google Scholar 

  38. Nafisi V, Hägg M B. Development of nanocomposite membranes containing modified Si nanoparticles in PEBAX-2533 as a block copolymer and 6FDA-durene diamine as a glassy polymer. ACS Applied Materials & Interfaces, 2014, 6(18): 15643–15652

    Article  CAS  Google Scholar 

  39. Ding H, Pan F, Mulalic E, Gomaa H, Li W, Yang H, Wu H, Jiang Z, Wang B, Cao X, Zhang P. Enhanced desulfurization performance and stability of Pebax membrane by incorporating Cu+, and Fe2+ ions co-impregnated carbon nitride. Journal of Membrane Science, 2017, 526: 94–105

    Article  CAS  Google Scholar 

  40. Rychlewska K, Kujawski W, Konieczny K. Pervaporative removal of organosulfur compounds (OSCs) from gasoline using PEBA and PDMS based commercial hydrophobic membranes. Chemical Engineering Journal, 2017, 309: 435–444

    Article  CAS  Google Scholar 

  41. Pan F, Wang H, Li W, Zhang S, Sun J, Yang H, Wang M, Wang M, Zhou X, Liu X, et al. Constructing rapid diffusion pathways in ultrapermeable hybrid membranes by hierarchical porous nanotubes. Chemical Engineering Science, 2019, 195: 609–618

    Article  CAS  Google Scholar 

  42. Pan F, Ding H, Li W, Song Y, Yang H, Wu H, Jiang Z, Wang B, Cao X. Constructing facilitated transport pathway in hybrid membranes by incorporating MoS2 nanosheets. Journal of Membrane Science, 2018, 545: 29–37

    Article  CAS  Google Scholar 

  43. Mittal N, Nisola G M, Seo J G, Lee S P, Chung WJ. Organic radical functionalized SBA-15 as a heterogeneous catalyst for facile oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Journal of Molecular Catalysis A: Chemical, 2015, 404: 106–114

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21621004, 21409583, and 21878216), the Program of Introducing Talents of Discipline to Universities (No. B06006), the State Key Laboratory of Organic-Inorganic Composites (No. OIC-201801003) and the Open Project Program of State Key Laboratory of Petroleum Pollution Control (Grant No. PPC2017014), CNPC Research Institute of Safety and Environmental Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Jiang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Song, J., Mayta, J.Q. et al. Enhanced desulfurization performance of hybrid membranes using embedded hierarchical porous SBA-15. Front. Chem. Sci. Eng. 14, 661–672 (2020). https://doi.org/10.1007/s11705-019-1830-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1830-3

Keywords

Navigation