Skip to main content
Log in

Cryptosporidium parvum oocyst directed assembly of gold nanoparticles and graphene oxide

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Understanding the interactions between inorganic nanomaterials and biological species is an important topic for surface and environmental chemistry. In this work, we systematically studied the oocysts of Cryptosporidium parvum as a model protozoan parasite and its interaction with gold nanoparticles (AuNPs) and graphene oxide (GO). The as-prepared citrate-capped AuNPs adsorb strongly on the oocysts leading to a vivid color change. The adsorption of the AuNPs was confirmed by transmission electron microscopy. Heat treatment fully inhibited the color change, indicating a large change of surface chemistry of the oocysts that can be probed by the AuNPs. Adding proteases such as trypsin and proteinase K partially inhibited the color change. DNA-capped AuNPs, on the other hand, could not be adsorbed by the oocysts. GO was found to wrap around the oocysts forming a conformal shell reflecting the shape of the oocysts. Both citrate-capped AuNPs and GO compromised the membrane integrity of the oocysts as indicated by the propidium iodide staining experiment, and they may be potentially used for inactivating the oocysts. This is the first example of using nanomaterials to probe the surface of the oocysts, and it suggests the possibility of using such organisms to template the assembly of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Macfarlane R J, Lee B, Jones M R, Harris N, Schatz G C, Mirkin C A. Nanoparticle superlattice engineering with DNA. Science, 2011, 334(6053): 204–208

    Article  CAS  PubMed  Google Scholar 

  2. Geim A K. Graphene: Status and prospects. Science, 2009, 324 (5934): 1530–1534

    Article  CAS  PubMed  Google Scholar 

  3. Montini T, Melchionna M, Monai M, Fornasiero P. Fundamentals and catalytic applications of CeO2-based materials. Chemical Reviews, 2016, 116(10): 5987–6041

    Article  CAS  PubMed  Google Scholar 

  4. Daniel M C, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 2004, 104(1): 293–346

    Article  CAS  PubMed  Google Scholar 

  5. Ghafari P, St-Denis C H, Power M E, Jin X, Tsou V, Mandal H S, Bols N C, Tang X. Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nature Nanotechnology, 2008, 3(6): 347–351

    Article  CAS  PubMed  Google Scholar 

  6. Krysanov E Y, Pavlov D S, Demidova T B, Dgebuadze Y Y. Effect of nanoparticles on aquatic organisms. Biological Bulletin, 2010, 37 (4): 406–412

    Article  Google Scholar 

  7. Klaine S J, Alvarez P J J, Batley G E, Fernandes T F, Handy R D, Lyon D Y, Mahendra S, McLaughlin M J, Lead J R. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 2008, 27(9): 1825–1851

    Article  CAS  PubMed  Google Scholar 

  8. Dogan-Topal B, Uslu B, Ozkan S A. Detection of DNA damage induced by nanomaterials. In: Nanoscale Fabrication, Optimization, Scale-Up and Biological Aspects of Pharmaceutical Nanotechnology. New York: William Andrew Publishing, 2018, 547–577

    Chapter  Google Scholar 

  9. Jahan S, Yusoff I B, Alias Y B, Bakar A F B A. Reviews of the toxicity behavior of five potential engineered nanomaterials (ENMs) into the aquatic ecosystem. Toxicology Reports, 2017, 4: 211–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang F, Salvati A, Boya P. Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles. Open Biology, 2018, 8(4): 1–13

    Google Scholar 

  11. Leitch G J, He Q. Cryptosporidiosis—an overview. Journal of Biomedical Research, 2011, 25(1): 1–16

    Article  PubMed Central  Google Scholar 

  12. Nanduri J, Williams S, Aji T, Flanigan T P. Characterization of an immunogenic glycocalyx on the surfaces of Cryptosporidium parvum oocysts and sporozoites. Infection and Immunity, 1999, 67(4): 2022–2024

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuznar Z A, Elimelech M. Role of surface proteins in the deposition kinetics of Cryptosporidium parvum oocysts. Langmuir, 2005, 21(2): 710–716

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Kuhlenschmidt M S, Kuhlenschmidt T B, Nguyen T H. Composition and conformation of Cryptosporidium parvum oocyst wall surface macromolecules and their effect on adhesion kinetics of oocysts on quartz surface. Biomacromolecules, 2010, 11(8): 2109–2115

    Article  CAS  PubMed  Google Scholar 

  15. Storhoff J L, Elghanian R, Mucic R C, Mirkin C A, Letsinger R L. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Journal of the American Chemical Society, 1998, 120(9): 1959–1964

    Article  CAS  Google Scholar 

  16. Liu J, Lu Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nature Protocols, 2006, 1(1): 246–252

    Article  CAS  PubMed  Google Scholar 

  17. Liu B, Wu P, Huang Z, Ma L, Liu J. Bromide as a robust backfiller on gold for precise control of DNA conformation and high stability of spherical nucleic acids. Journal of the American Chemical Society, 2018, 140(13): 4499–4502

    Article  CAS  PubMed  Google Scholar 

  18. Bushkin G G, Motari E, Carpentieri A, Dubey J P, Costello C E, Robbins P W, Samuelson J. Evidence for a structural role for acid-fast lipids in oocyst walls of Cryptosporidium, Toxoplasma, and Eimeria. mBio, 2013, 4(5): 1–8

    Article  CAS  Google Scholar 

  19. Jenkins M B, Eaglesham B S, Anthony L C, Kachlany S C, Bowman D D, Ghiorse W C. Significance of wall structure, macromolecular composition, and surface polymers to the survival and transport of Cryptosporidium parvum oocysts. Applied and Environmental Microbiology, 2010, 76(6): 1926–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rosi N L, Mirkin C A. Nanostructures in biodiagnostics. Chemical Reviews, 2005, 105(4): 1547–1562

    Article  CAS  PubMed  Google Scholar 

  21. Liu B, Liu J. Methods for preparing DNA-functionalized gold nanoparticles, a key reagent of bioanalytical chemistry. Analytical Methods, 2017, 9(18): 2633–2643

    Article  Google Scholar 

  22. Otten L, Vlachou D, Richards S J, Gibson M I. Glycan heterogeneity on gold nanoparticles increases lectin discrimination capacity in label-free multiplexed bioassays. Analyst (London), 2016, 141(14): 4305–4312

    Article  CAS  Google Scholar 

  23. Wang F, Liu J. Self-healable and reversible liposome leakage by citrate-capped gold nanoparticles: Probing the initial adsorption/desorption induced lipid phase transition. Nanoscale, 2015, 7(38): 15599–15604

    Article  CAS  PubMed  Google Scholar 

  24. Wang F, Curry D E, Liu J. Driving adsorbed gold nanoparticle assembly by merging lipid gel/fluid interfaces. Langmuir, 2015, 31 (49): 13271–13274

    Article  CAS  PubMed  Google Scholar 

  25. Liu B, Huang Z, Liu J. Polyvalent spherical nucleic acids for universal display of functional DNA with ultrahigh stability. Angewandte Chemie International Edition, 2018, 57(30): 9439–9442

    Article  CAS  PubMed  Google Scholar 

  26. Cutler J I, Auyeung E, Mirkin C A. Spherical nucleic acids. Journal of the American Chemical Society, 2012, 134(3): 1376–1391

    Article  CAS  PubMed  Google Scholar 

  27. Tan L H, Xing H, Lu Y. DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles. Accounts of Chemical Research, 2014, 47(6): 1881–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Zhang L, Peng F, Shi X, Leong D T. Targeting endothelial cell junctions with negatively charged gold nanoparticles. Chemistry of Materials, 2018, 30(11): 3759–3767

    Article  CAS  Google Scholar 

  29. Huang M L, Godula K. Nanoscale materials for probing the biological functions of the glycocalyx. Glycobiology, 2016, 26(8): 797–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Novoselov K S, Falko V I, Colombo L, Gellert P R, Schwab M G, Kim K. A roadmap for graphene. Nature, 2012, 490(7419): 192–200

    Article  CAS  PubMed  Google Scholar 

  31. Liu J. Adsorption of DNA onto gold nanoparticles and graphene oxide: Surface science and applications. Physical Chemistry Chemical Physics, 2012, 14(30): 10485–10496

    Article  CAS  PubMed  Google Scholar 

  32. Ip A C F, Liu B, Huang P J J, Liu J. Oxidation level-dependent zwitterionic liposome adsorption and rupture by graphene-based materials and light-induced content release. Small, 2013, 9(7): 1030–1035

    Article  CAS  PubMed  Google Scholar 

  33. Ang P K, Jaiswal M, Lim C H, Wang Y, Sankaran J, Li A, Lim C T, Wohland T, Barbaros O, Loh K P. A bioelectronic platform using a graphene-lipid bilayer interface. ACS Nano, 2010, 4(12): 7387–7394

    Article  CAS  PubMed  Google Scholar 

  34. Tu Y, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z, Huang Q, Fan C, Fang H, Zhou R. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature Nanotechnology, 2013, 8(8): 594–601

    Article  CAS  PubMed  Google Scholar 

  35. Xue J, BinAhmed S, Wang Z, Karp N G, Stottrup B L, Romero-Vargas Castrillón S. Bacterial adhesion to graphene oxide (GO)-functionalized interfaces is determined by hydrophobicity and GO sheet spatial orientation. Environmental Science & Technology Letters, 2018, 5(1): 14–19

    Article  CAS  Google Scholar 

  36. Kempaiah R, Chung A, Maheshwari V. Graphene as cellular interface: Electromechanical coupling with cells. ACS Nano, 2011, 5(7): 6025–6031

    Article  CAS  PubMed  Google Scholar 

  37. Zhang B, Wei P, Zhou Z, Wei T. Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Advanced Drug Delivery Reviews, 2016, 105: 145–162

    Article  CAS  PubMed  Google Scholar 

  38. Li B L, Wang J, Gao Z F, Shi H, Zou H L, Ariga K, Leong D T. Ratiometric immunoassays built from synergistic photonic absorption of size-diverse semiconducting MoS2 nanostructures. Materials Horizons, 2018, 6: 563–570

    Article  Google Scholar 

  39. Li B L, Wang J, Zou H L, Garaj S, Lim C T, Xie J, Li N B, Leong D T. Low-dimensional transition metal dichalcogenide nanostructures based sensors. Advanced Functional Materials, 2016, 26(39): 7034–7056

    Article  CAS  Google Scholar 

  40. Li B L, Setyawati M I, Zou H L, Dong J X, Luo H Q, Li N B, Leong D T. Emerging 0D transition-metal dichalcogenides for sensors, biomedicine, and clean energy. Small, 2017, 13(31): 1–20

    Article  CAS  Google Scholar 

  41. Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, Hejazi M, Gharaatifar N, Hasanzadeh M, Baradaran B, de la Guardia M. Nanomaterial-based biosensors for detection of pathogenic virus. Trends in Analytical Chemistry, 2017, 97: 445–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fayer R. Effect of high temperature on infectivity of Cryptosporidium parvum oocysts in water. Applied and Environmental Microbiology, 1994, 60(8): 2732–2735

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cameron P, Gaiser B K, Bhandari B, Bartley P M, Katzer F, Bridle H. Silver nanoparticles decrease the viability of Cryptosporidium parvum oocysts. Applied and Environmental Microbiology, 2016, 82(2): 431–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maiti S, Krishnan D, Barman G, Ghosh S K, Laha J K. Antimicrobial activities of silver nanoparticles synthesized from Lycopersiconesculentum extract. Journal of Analytical Science and Technology, 2014, 5(40): 1–7

    Google Scholar 

  45. Giljohann D A, Seferos D S, Daniel W L, Massich M D, Patel P C, Mirkin C A. Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition, 2010, 49(19): 3280–3284

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for this work was from the Advancing Water Technologies (AWT) program of the Southern Ontario Water Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juewen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Huang, Z., Dixon, B.R. et al. Cryptosporidium parvum oocyst directed assembly of gold nanoparticles and graphene oxide. Front. Chem. Sci. Eng. 13, 608–615 (2019). https://doi.org/10.1007/s11705-019-1813-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1813-4

Keywords

Navigation