Skip to main content
Log in

Carbon-based materials for photodynamic therapy: A mini-review

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Carbon-based materials have been extensively applied in photodynamic therapy owing to the unique optical characteristics, good biocompatibility and tunable systematic toxicity. This mini-review mainly focuses on the recent application of carbon-based materials including graphene, carbon nanotube, fullerene, corannulene, carbon dot and mesoporous carbon nanoparticle. The carbon-based materials can perform not only as photosensitizers, but also effective carriers for photosensitizers in photodynamic therapy, and its combined treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dougherty T J, Henderson B W. Photodynamic therapy. Marcel Dekker, 1992, 1–15

    Google Scholar 

  2. Dougherty T J, Gomer C J, Henderson B W, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. Journal of the National Cancer Institute, 1998, 90(12): 889–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allison R R, Mota H C, Sibata C H. Clinical PD/PDT in North America: An historical review. Photodiagnosis and Photodynamic Therapy, 2004, 1(4): 263–277

    Article  CAS  PubMed  Google Scholar 

  4. Silva T C, Pereira A F F, Exterkate R A, Bagnato V S, Buzalaf M A, Machado M A, Ten Cate J M, Crielaard W, Deng D M. Application of an active attachment model as a high-throughput demineralization biofilm model. Journal of Dentistry, 2012, 40(1): 41–47

    Article  CAS  PubMed  Google Scholar 

  5. Kennedy J C, Pottier R H. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 1992, 14(4): 275–292

    Article  CAS  Google Scholar 

  6. Szygula M, Pietrusa A, Adamek M, Wojciechowski B, Kawczyk-Krupka A, Cebula W, Duda W, Sieron A. Combined treatment of urinary bladder cancer with the use of photodynamic therapy (PDT) and subsequent BCG-therapy: A pilot study. Photodiagnosis and Photodynamic Therapy, 2004, 1(3): 241–246

    Article  CAS  PubMed  Google Scholar 

  7. Lyons M, Phang I, Eljamel S. The effects of PDT in primary malignant brain tumours could be improved by intraoperative radiotherapy. Photodiagnosis and Photodynamic Therapy, 2012, 9 (1): 40–45

    Article  PubMed  Google Scholar 

  8. Date M, Fukuchi K, Namiki Y, Okumura A, Morita S, Takahashi H, Ohura K. Therapeutic effect of photodynamic therapy using PAD-S31 and diode laser on human liver cancer cells. Liver International, 2004, 24(2): 142–148

    Article  CAS  PubMed  Google Scholar 

  9. Algharib A M, Sultan A, Parekh J, Vaz F, Hopper C. Endoluminal tracheal stenting prior to head and neck PDT. Photodiagnosis and Photodynamic Therapy, 2014, 11(3): 444–446

    Article  PubMed  Google Scholar 

  10. Overholt B F, Panjehpour M, Haydek J M. Photodynamic therapy for Barrett’s esophagus. Gastrointestinal Endoscopy, 1997, 7(2): 207–220

    CAS  Google Scholar 

  11. Moghissi K. Endoscopic photodynamic therapy (PDT) for oesophageal cancer. Photodiagnosis and Photodynamic Therapy, 2006, 3(2): 93–95

    Article  PubMed  Google Scholar 

  12. Ortner M. Photodynamic therapy for cholangiocarcinoma. Journal of Hepato-Biliary-Pancreatic Sciences, 2001, 8(2): 137–139

    Article  CAS  Google Scholar 

  13. Berr F, Wiedmann M, Tannapfel A, Halm U, Kohlhaw K R, Schmidt F, Wittekind C, Hauss J, Mössner J. Photodynamic therapy for advanced bile duct cancer: Evidence for improved palliation and extended survival. Hepatology, 2000, 31(2): 291–298

    Article  CAS  PubMed  Google Scholar 

  14. Bown S G, Rogowska A Z, Whitelaw D E, Lees W R, Lovat L B, Ripley P, Jones L, Wyld P, Gillams A, Hatfield A W. Photodynamic therapy for cancer of the pancreas. Gut, 2002, 50 (4): 549–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qiang Y, Zhang X, Li J, Huang Z. Medical progress. Chinese Medical Journal, 2006, 119(10): 845–857

    Article  CAS  PubMed  Google Scholar 

  16. Kereiakes D J, Szyniszewski A M, Wahr D, Herrmann H C, Simon D I, Rogers C, Kramer P, Shear W, Yeung A C, Shunk K A, et al. Phase I drug and light dose-escalation trial of motexafin lutetium and far red light activation (phototherapy) in subjects with coronary artery disease undergoing percutaneous coronary intervention and stent deployment: Pocedural and long-term results. Circulation, 2003, 108(11): 1310–1315

    Article  PubMed  Google Scholar 

  17. Pollock B, Turner D, Stringer M R, Bojar R A, Goulden V, Stables G I, Cunliffe W J. Topical aminolaevulinic acid-photodynamic therapy for the treatment of acne vulgaris: A study of clinical efficacy and mechanism of action. British Journal of Dermatology, 2004, 151(3): 616–622

    Article  CAS  PubMed  Google Scholar 

  18. Dolmans D E, Fukumura D, Jain R K. Photodynamic therapy for cancer. Nature Reviews: Cancer, 2003, 3(5): 380–387

    CAS  PubMed  Google Scholar 

  19. Ding L. Phthalocyanine based photosensitizers for photodynamic therapy. Chinese Journal of Inorganic Chemistry, 2013, 29(8): 1591–1598

    CAS  Google Scholar 

  20. Zhenjun D, Lown J W. Hypocrellins and their use in photosensitization. Photochemistry and Photobiology, 1990, 52(3): 609–616

    Article  CAS  PubMed  Google Scholar 

  21. Cao J, An H, Huang X, Fu G, Zhuang R, Zhu L, Xie J, Zhang F. Monitoring of the tumor response to nano-graphene oxidemediated photothermal/photodynamic therapy by diffusionweighted and BOLD MRI. Nanoscale, 2016, 8(19): 10152–10159

    Article  CAS  PubMed  Google Scholar 

  22. Rong P, Yang K, Srivastan A, Kiesewetter D O, Yue X, Wang F, Nie L, Bhirde A, Wang Z, Liu Z, et al. Photosensitizer loaded nanographene for multimodality imaging guided tumor photodynamic therapy. Theranostics, 2014, 4(3): 229–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ogbodu R O, Ndhundhuma I, Karsten A, Nyokong T. Photodynamic therapy effect of zinc monoamino phthalocyanine-folic acid conjugate adsorbed on single walled carbon nanotubes on melanoma cells. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2015, 137: 1120–1125

    Article  CAS  Google Scholar 

  24. Ogbodu R O, Amuhaya E K, Mashazi P, Nyokong T. Photophysical properties of zinc phthalocyanine-uridine single walled carbon nanotube–conjugates. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2015, 149: 231–239

    Article  CAS  Google Scholar 

  25. Wang X, Yang C X, Chen J T, Yan X P. A dual-targeting upconversion nanoplatform for two-color fluorescence imagingguided photodynamic therapy. Analytical Chemistry, 2014, 86(7): 3263–3267

    Article  CAS  PubMed  Google Scholar 

  26. Yu C, Avci P, Canteenwala T, Chiang L Y, Chen B J, Hamblin M R. Photodynamic therapy with hexa (sulfo-n-butyl) [60] fullerene against sarcoma in vitro and in vivo. Journal of Nanoscience and Nanotechnology, 2016, 16(1): 171–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang B P, Hu L F, Shen X C, Ji S C, Shi Z, Liu C J, Zhang L, Liang H. One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic therapy. ACS Applied Materials & Interfaces, 2014, 6 (20): 18008–18017

    Article  CAS  Google Scholar 

  28. Zhang M, Murakami T, Ajima K, Tsuchida K, Sandanayaka A S, Ito O, Iijima S, Yudasaka M. Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(39): 14773–14778

    Article  PubMed  PubMed Central  Google Scholar 

  29. Battigelli A, MénardMC, Bianco A. Carbon nanomaterials as new tools for immunotherapeutic applications. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(37): 6144–6156

    Article  CAS  Google Scholar 

  30. Li Q, Hong L, Li H, Liu C. Graphene oxide-fullerene C60 (GOC60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light. Biosensors & Bioelectronics, 2017, 89(Part 1): 477–482

    Article  CAS  Google Scholar 

  31. Shi J, Liu Y, Wang L, Gao J, Zhang J, Yu X, Ma R, Liu R, Zhang Z. A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemophotodynamic therapy. Acta Biomaterialia, 2014, 10(3): 1280–1291

    Article  CAS  PubMed  Google Scholar 

  32. Hong G, Diao S, Antaris A L, Dai H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chemical Reviews, 2015, 115(19): 10816–10906

    Article  CAS  PubMed  Google Scholar 

  33. Modugno G, Ménard-Moyon C, Prato M, Bianco A. Carbon nanomaterials combined with metal nanoparticles for theranostic applications. British Journal of Clinical Pharmacology, 2015, 172 (4): 975–991

    Article  CAS  Google Scholar 

  34. Bitounis D, Ali-Boucetta H, Hong B H, Min D H, Kostarelos K. Prospects and challenges of graphene in biomedical applications. Advanced Materials, 2013, 25(16): 2258–2268

    Article  CAS  PubMed  Google Scholar 

  35. Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chemical Society Reviews, 2013, 42(2): 530–547

    Article  CAS  PubMed  Google Scholar 

  36. Shi S, Yang K, Hong H, Valdovinos H F, Nayak T R, Zhang Y, Theuer C P, Barnhart T E, Liu Z, Cai W. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials, 2013, 34(12): 3002–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials, 2013, 34(20): 4786–4793

    Article  CAS  PubMed  Google Scholar 

  38. Qin J, Chen H, Chang H, Ma Y, Chen Y. Highly reusable and environmentally friendly solid fuel material based on threedimensional graphene foam. Energy & Fuels, 2016, 30(11): 9876–9881

    Article  CAS  Google Scholar 

  39. Kuo W S, Shao Y T, Huang K S, Chou T M, Yang C H, Chen P, Chang C, Huang C, Hsu C, Chou T. Antimicrobial aminofunctionalized nitrogen-doped graphene quantum dots for eliminating multidrug-resistant species in dual-modality photodynamic therapy and bioimaging under two-photon excitation. ACS Applied Materials & Interfaces, 2018, 10(17): 14438–14446

    Article  CAS  Google Scholar 

  40. Markovic Z M, Ristic B Z, Arsikin K M, Klisic D G, Harhaji-Trajkovic L M, Todorovic-Markovic B M, Kepic D P, Kravic-Stevovic T K, Jovanovic S P, Milenkovic M M, et al. Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials, 2012, 33(29): 7084–7092

    Article  CAS  PubMed  Google Scholar 

  41. Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nature Communications, 2014, 5(1): 4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu Y, Xu Y, Geng X, Huo Y, Chen D, Sun K, Zhou G, Chen B, Tao K. Synergistic targeting and efficient photodynamic therapy based on graphene oxide quantum dot-upconversion nanocrystal hybrid nanoparticles. Small, 2018, 14(19): e1800293

    Article  CAS  PubMed  Google Scholar 

  43. Chatterjee D K, Fong L S, Zhang Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Advanced Drug Delivery Reviews, 2008, 60(15): 1627–1637

    Article  CAS  PubMed  Google Scholar 

  44. Chen D, Tao R, Tao K, Chen B, Choi S K, Tian Q, Xu Y, Zhou G, Sun K. Efficacy dependence of photodynamic therapy mediated by upconversion nanoparticles: Subcellular positioning and irradiation productivity. Small, 2017, 13(13): 1602053

    Article  CAS  Google Scholar 

  45. Hu D, Zhang J, Gao G, Sheng Z, Cui H, Cai L. Indocyanine greenloaded polydopamine-reduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics. Theranostics, 2016, 6(7): 1043–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou L, Zhou L, Wei S, Ge X, Zhou J, Jiang H, Li F, Shen J. Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. Journal of Photochemistry and Photobiology B: Biology, 2014, 135(3): 7–16

    Article  CAS  Google Scholar 

  47. McCallion C, Burthem J, Rees-Unwin K, Golovanov A, Pluen A. Graphene in therapeutics delivery: Problems, solutions and future opportunities. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 104: 235–250

    Article  CAS  PubMed  Google Scholar 

  48. Cho Y, Choi Y. Graphene oxide-photosensitizer conjugate as a redox-responsive theranostic agent. Chemical Communications, 2012, 48(79): 9912–9914

    Article  CAS  PubMed  Google Scholar 

  49. Akbari T, Pourhajibagher M, Hosseini F, Chiniforush N, Gholibegloo E, Khoobi M, Shahabi S, Bahador A. The effect of indocyanine green loaded on a novel nano-graphene oxide for high performance of photodynamic therapy against Enterococcus faecalis. Photodiagnosis and Photodynamic Therapy, 2017, 20: 148–153

    Article  CAS  PubMed  Google Scholar 

  50. Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 2012, 33(7): 2206–2214

    Article  CAS  PubMed  Google Scholar 

  51. Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research, 2012, 5(3): 199–212

    Article  CAS  Google Scholar 

  52. Tian B, Wang C, Zhang S, Feng L, Liu Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano, 2011, 5(9): 7000–7009

    Article  CAS  PubMed  Google Scholar 

  53. Sahu A, Choi W I, Lee J H, Tae G. Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials, 2013, 34(26): 6239–6248

    Article  CAS  PubMed  Google Scholar 

  54. Wang Y, Wang H, Liu D, Song S, Wang X, Zhang H. Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials, 2013, 34(31): 7715–7724

    Article  CAS  PubMed  Google Scholar 

  55. Gollavelli G, Ling Y C. Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials, 2014, 35(15): 4499–4507

    Article  CAS  PubMed  Google Scholar 

  56. Hu Z, Li J, Huang Y, Chen L, Li Z. Functionalized graphene/C60 nanohybrid for targeting photothermally enhanced photodynamic therapy. RSC Advances, 2014, 5(1): 654–664

    Article  CAS  Google Scholar 

  57. Pu J, Mo Y, Wan S, Wang L. Fabrication of novel graphenefullerene hybrid lubricating films based on self-assembly for MEMS applications. Chemical Communications, 2014, 50(4): 469–471

    Article  CAS  PubMed  Google Scholar 

  58. Song P, Liu L, Huang G, Yu Y, Guo Q. Largely enhanced thermal and mechanical properties of polymer nanocomposites via incorporating C60@graphene nanocarbon hybrid. Nanotechnology, 2013, 24(50): 505706

    Article  CAS  PubMed  Google Scholar 

  59. Geim A K. Graphene: Status and prospects. Science, 2009, 324 (5934): 1530–1534

    Article  CAS  PubMed  Google Scholar 

  60. Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 2010, 22(35): 3906–3924

    Article  CAS  PubMed  Google Scholar 

  61. Sun X, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 2008, 1(3): 203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gulzar A, Xu J, Yang D, Xu L, He F, Gai S, Yang P. Nanographene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Transactions, 2018, 47(11): 3931–3939

    Article  CAS  PubMed  Google Scholar 

  63. Falvo M R, Clary G J, Taylor R M II, Chi V, Brooks F P Jr, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain. Nature, 1997, 389(6651): 582–584

    Article  CAS  PubMed  Google Scholar 

  64. Falvo M R, Taylor R M II, Helser A, Chi V, Brooks F P Jr, Washburn S, Superfine R. Nanometre-scale rolling and sliding of carbon nanotubes. Nature, 1999, 397(6716): 236–238

    Article  CAS  PubMed  Google Scholar 

  65. Yazid M N A W M, Sidik N A C, Mamat R, Najafi G. A review of the impact of preparation on stability of carbon nanotube nanofluids. International Communications in Heat and Mass Transfer, 2016, 78: 253–263

    Article  CAS  Google Scholar 

  66. Wei B Q, Vajtai R, Jung Y, Ward J, Zhang R, Ramanath G, Ajayan P M. Microfabrication technology: Organized assembly of carbon nanotubes. Nature, 2002, 416(6880): 495–496

    Article  CAS  PubMed  Google Scholar 

  67. Gandra N, Chiu P L, Li W, Anderson Y R, Mitra S, He H, Gao R. Photosensitized singlet oxygen production upon two-photon excitation of single-walled carbon nanotubes and their functionalized analogs. Journal of Physical Chemistry C: Nanomaterials and Interfaces, 2009, 113(13): 5182–8185

    Article  CAS  PubMed  Google Scholar 

  68. Murakami T, Nakatsuji H, Inada M, Matoba Y, Umeyama T, Tsujimoto M, Isoda S, Hashida M, Imahori H. Photodynamic and photothermal effects of semiconducting and metallic-enriched single-walled carbon nanotubes. Journal of the American Chemical Society, 2012, 134(43): 17862–17865

    Article  CAS  PubMed  Google Scholar 

  69. Wang L, Shi J, Liu R, Liu Y, Zhang J, Yu X, Gao J, Zhang C, Zhang Z. Photodynamic effect of functionalized single-walled carbon nanotubes: A potential sensitizer for photodynamic therapy. Nanoscale, 2014, 6(9): 4642–4651

    Article  CAS  PubMed  Google Scholar 

  70. Ali-Boucetta H, Kostarelos K. Carbon nanotubes in medicine & biology—therapy and diagnostics. Advanced Drug Delivery Reviews, 2013, 65(15): 1897–1898

    Article  CAS  PubMed  Google Scholar 

  71. Andersen A J, Robinson J T, Dai H, Hunter A C, Andresen T L, Moghimi S M. Single-walled carbon nanotube surface control of complement recognition and activation. ACS Nano, 2013, 7(2): 1108–1119

    Article  CAS  PubMed  Google Scholar 

  72. Ma X, Zhang L H, Wang L R, Xue X, Sun J H, Wu Y, Zou G, Wu X, Wang P C, Wamer W G, et al. Single-walled carbon nanotubes alter cytochrome c electron transfer and modulate mitochondrial function. ACS Nano, 2012, 6(12): 10486–10496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Staicu A, Smarandache A, Pascu A, Pascu M L. Photophysics of covalently functionalized single wall carbon nanotubes with verteporfin. Applied Surface Science, 2017, 417: 170–174

    Article  CAS  Google Scholar 

  74. Aveline B, Hasan T, Redmond R W, Aveline B, Hasan T, Redmond R W. Photophysical and photosensitizing properties of benzoporphyrin derivative monoacid ring A (BPD-MA). Photochemistry and Photobiology, 1994, 59(3): 328–335

    Article  CAS  PubMed  Google Scholar 

  75. Sah U, Sharma K, Chaudhri N, Sankar M, Gopinath P. Antimicrobial photodynamic therapy: Single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus. Colloids and Surfaces B: Biointerfaces, 2018, 162: 108–117

    Article  CAS  PubMed  Google Scholar 

  76. Bachilo S M, Strano M S, Kittrell C, Hauge R H, Smalley R E, Weisman R B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 2002, 298(5602): 2361–2366

    Article  CAS  PubMed  Google Scholar 

  77. Zhang M, Wang J, Wang W, Zhang J, Zhou N. Magnetofluorescent photothermal micelles packaged with GdN@CQDs as photothermal and chemical dual-modal therapeutic agents. Chemical Engineering Journal, 2017, 330: 442–452

    Article  CAS  Google Scholar 

  78. Singh R, Torti S V. Carbon nanotubes in hyperthermia therapy. Advanced Drug Delivery Reviews, 2013, 65(15): 2045–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liang C, Diao S, Wang C, Gong H, Liu T, Hong G, Shi X, Dai H, Liu Z. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Advanced Materials, 2014, 26(32): 5646–5652

    Article  CAS  PubMed  Google Scholar 

  80. Zhang B, Wang H, Shen S, She X, Shi W, Chen J, Zhang Q, Hu Y, Pang Z, Jiang X. Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor. Biomaterials, 2016, 79: 46–55

    Article  CAS  PubMed  Google Scholar 

  81. Murali V S, Mikoryak C, Wang R, Draper R K. Abstract 5374: Effect of carbon nanotube amount and subcellular location on the near infrared (NIR) photothermal ablation of cells. Cancer Research, 2014, 74(19): 5374–5374

    Google Scholar 

  82. Hashida Y, Tanaka H, Zhou S, Kawakami S, Yamashita F, Murakami T, Umeyama T, Imahori H, Hashida M. Photothermal ablation of tumor cells using a single-walled carbon nanotubepeptide composite. Journal of Controlled Release, 2014, 173(1): 59–66

    Article  CAS  PubMed  Google Scholar 

  83. Marangon I, Ménard-Moyon C, Silva A K A, Bianco A, Luciani N, Gazeau F. Synergic mechanisms of photothermal and photodynamic therapies mediated by photosensitizer/carbon nanotube complexes. Carbon, 2016, 97(6): 110–123

    Article  CAS  Google Scholar 

  84. Xie L, Wang G, Zhou H, Zhang F, Guo Z, Liu C, Zhang X, Zhu L. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials, 2016, 103: 219–228

    Article  CAS  PubMed  Google Scholar 

  85. Zhang M, Wang W, Cui Y, Chu X, Sun B, Zhou N, Shen J. Magnetofluorescent Fe3O4/carbon quantum dots coated singlewalled carbon nanotubes as dual-modal targeted imaging and chemo/photodynamic/photothermal triple-modal therapeutic agents. Chemical Engineering Journal, 2018, 338: 526–538

    Article  CAS  Google Scholar 

  86. Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E. C60: Buckminsterfullerene. Nature, 1985, 318(6042): 162–163

    Article  CAS  Google Scholar 

  87. Krätschmer W, Lamb L D, Fostiropoulos K, Huffman D R. Solid C60: A new form of carbon. Nature, 1990, 347(6291): 354–358

    Article  Google Scholar 

  88. Wilson R J, Meijer G, Bethune D S, Johnson R D, Chambliss D, de Vries M S, Hunziker H E, Wendt H R. Imaging C60 clusters on a surface using a scanning tunnelling microscope. Nature, 1990, 348 (6302): 621–622

    Article  CAS  Google Scholar 

  89. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multiwall nanotube, and fullerene. Environmental Science & Technology, 2005, 39(5): 1378–1383

    Article  CAS  Google Scholar 

  90. Cai X, Hao J, Zhang X, Yu B, Ren J, Luo C, Li Q, Huang Q, Shi X, Li W, Liu J. The polyhydroxylated fullerene derivative C60(OH)24 protects mice from ionizing-radiation-induced immune and mitochondrial dysfunction. Toxicology and Applied Pharmacology, 2010, 243(1): 27–34

    Article  CAS  PubMed  Google Scholar 

  91. Li Z, Pan L L, Zhang F L, Wang Z, Shen Y Y, Zhang Z Z. Preparation and characterization of fullerene (C60) amino acid nanoparticles for liver cancer cell treatment. Journal of Nanoscience and Nanotechnology, 2014, 14(6): 4513–4518

    Article  CAS  PubMed  Google Scholar 

  92. Otake E, Sakuma S, Torii K, Maeda A, Ohi H, Yano S, Morita A. Effect and mechanism of a new photodynamic therapy with glycoconjugated fullerene. Photochemistry and Photobiology, 2010, 86(6): 1356–1363

    Article  CAS  PubMed  Google Scholar 

  93. Arbogast JW, Darmanyan A P, Foote C S, Diederich F N, Whetten R L, Rubin Y, Alvarez M M, Anz S J. Photophysical properties of sixty atom carbon molecule (C60). Journal of Physical Chemistry, 2002, 95(1): 11–12

    Article  Google Scholar 

  94. Saitoh Y, Miyanishi A, Mizuno H, Kato S, Aoshima H, Kokubo K, Miwa N. Super-highly hydroxylated fullerene derivative protects human keratinocytes from UV-induced cell injuries together with the decreases in intracellular ROS generation and DNA damages. Journal of Photochemistry and Photobiology B: Biology, 2011, 102(1): 69–76

    Article  CAS  Google Scholar 

  95. Iwamoto Y, Yamakoshi Y. A highly water-soluble C60-NVP copolymer: A potential material for photodynamic therapy. Chemical Communications, 2006, 46(46): 4805–4807

    Article  Google Scholar 

  96. Asada R, Liao F, Saitoh Y, Miwa N. Photodynamic anti-cancer effects of fullerene [C60]-PEG complex on fibrosarcomas preferentially over normal fibroblasts in terms of fullerene uptake and cytotoxicity. Molecular and Cellular Biochemistry, 2014, 390(1–2): 175–184

    Article  CAS  PubMed  Google Scholar 

  97. Li Z, Zhang F L, Pan L L, Zhu X L, Zhang Z Z. Preparation and characterization of injectable Mitoxantrone poly (lactic acid)/fullerene implants for in vivo chemo-photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2015, 149: 51–57

    Article  CAS  Google Scholar 

  98. Shi J, Wang B, Wang L, Lu T, Fu Y, Zhang H, Zhang Z. Fullerene (C60)-based tumor-targeting nanoparticles with “off-on” state for enhanced treatment of cancer. Journal of Controlled Release, 2016, 235: 245–258

    Article  CAS  PubMed  Google Scholar 

  99. Wang H, Agarwal P, Zhao S, Yu J, Lu X, He X. Combined cancer therapy with hyaluronan-decorated fullerene-silica multifunctional nanoparticles to target cancer stem-like cells. Biomaterials, 2016, 97: 62–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hu Q, Sun W, Lu Y, Bomba H N, Ye Y, Jiang T, Isaacson A J, Gu Z. Tumor microenvironment-mediated construction and deconstruction of extracellular drug-delivery depots. Nano Letters, 2016, 16(2): 1118–1126

    Article  CAS  PubMed  Google Scholar 

  101. Barth W E, Lawton R G. Dibenzo [ghi,mno] fluoranthene. Journal of the American Chemical Society, 1966, 88(2): 380–381

    Article  CAS  Google Scholar 

  102. Zoppi L, Martin-Samos L, Baldridge K K. Effect of molecular packing on corannulene-based materials electroluminescence. Journal of the American Chemical Society, 2011, 133(35): 14002–14009

    Article  CAS  PubMed  Google Scholar 

  103. Spisak S N, Zabula A V, Filatov A S, Rogachev A Y, Petrukhina M A. Selective endo and exo binding of alkali metals to corannulene. Angewandte Chemie, 2011, 50(35): 8090–8094

    Article  CAS  PubMed  Google Scholar 

  104. Baldridge K K, Siegel J S. Corannulene-based fullerene fragments C20H10-C50H10: When does a buckybowl become a buckytube? Theoretical Chemistry Accounts, 1997, 97(1–4): 67–71

    Article  CAS  Google Scholar 

  105. Lovas F J, McMahon R J, Grabow J U, Schnell M, Mack J, Scott L T, Kuczkowski R L. Interstellar chemistry: A strategy for detecting polycyclic aromatic hydrocarbons in space. Journal of the American Chemical Society, 2005, 127(12): 4345–4349

    Article  CAS  PubMed  Google Scholar 

  106. Liu S, Lu D, Wang X, Ding D, Kong D, Wang Z, Zhao Y. Topology dictates function: Controlled ROS production and mitochondria accumulation via curved carbon materials. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5(25): 4918–4925

    Article  CAS  Google Scholar 

  107. Zhang L, Dong X, Lu D, Liu S, Ding D, Kong D, Fan A, Wang Z, Zhao Y. Controlled ROS production by corannulene: The vehicle makes a difference. Biomaterials Science, 2017, 5(7): 1236–1240

    Article  CAS  PubMed  Google Scholar 

  108. Liu J H, Cao L, LeCroy G E, Wang P, Meziani M J, Dong Y, Liu Y, Luo P G, Sun Y P. Carbon quantum dots for fluorescecne labelling of cells. ACS Applied Materials & Interfaces, 2015, 7 (34): 19439–19445

    Article  CAS  Google Scholar 

  109. Huang P, Lin J, Wang X, Wang Z, Zhang C, He M, Wang K, Chen F, Li Z, Shen G, et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Advanced Materials, 2012, 24(37): 5104–5110

    Article  CAS  PubMed  Google Scholar 

  110. Zheng D W, Li B, Li C X, Fan J X, Lei Q, Li C, Xu Z, Zhang X Z. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano, 2016, 10(9): 8715–8722

    Article  CAS  PubMed  Google Scholar 

  111. Fang Y, Lv Y, Gong F, Wu Z, Li X, Zhu H, Zhou L, Yao C, Zhang F, Zheng G, et al. Interface tension-induced synthesis of monodispersed mesoporous carbon hemispheres. Journal of the American Chemical Society, 2015, 137(8): 2808–2811

    Article  CAS  PubMed  Google Scholar 

  112. Xu G J, Liu S J, Niu H, Lv W P, Wu R A. Functionalized mesoporous carbon nanoparticles for targeted chemo-photothermal therapy of cancer cells under near-infrared irradiation. RSC Advances, 2014, 4(64): 33986–33997

    Article  CAS  Google Scholar 

  113. Zhou L, Dong K, Chen Z W, Ren J S, Qu X G. Near-infrared absorbing mesoporous carbon nanoparticle as an intelligent drug carrier for dual-triggered synergistic cancer therapy. Carbon, 2015, 82: 479–488

    Article  CAS  Google Scholar 

  114. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761): 622–627

    Article  CAS  PubMed  Google Scholar 

  115. Kang S, Herzberg M, Rodrigues D F, Elimelech M. Antibacterial effects of carbon nanotubes: Size does matter! Langmuir, 2008, 24 (13): 6409–6413

    Article  CAS  PubMed  Google Scholar 

  116. Sayes C M, Gobin A M, Ausman K D, Mendez J, West J L, Colvin V L. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials, 2005, 26(36): 7587–7595

    Article  CAS  PubMed  Google Scholar 

  117. Shin D H, Tam Y T, Kwon G S. Polymeric micelle nanocarriers in cancer research. Frontiers of Chemical Science and Engineering, 2016, 10(3): 348–359

    Article  CAS  Google Scholar 

  118. Zhang P, Ye J, Liu E, Sun L, Zhang J, Lee S, Gong J, He H, Yang V C. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer. Frontiers of Chemical Science and Engineering, 2017, 11(4): 529–536

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from the National Basic Research Program of China (Granted No. 2015CB856500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Tao, R. & Wang, Z. Carbon-based materials for photodynamic therapy: A mini-review. Front. Chem. Sci. Eng. 13, 310–323 (2019). https://doi.org/10.1007/s11705-018-1750-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1750-7

Keywords

Navigation