Skip to main content
Log in

Synthetically engineered microbes reveal interesting principles of cooperation

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Cooperation is ubiquitous in biological systems. However, if natural selection favors traits that confer an advantage to one individual over another, then helping others would be paradoxical. Nevertheless, cooperation persists and is critical in maintaining homeostasis in systems ranging from populations of bacteria to groupings of mammals. Developing an understanding of the dynamics and mechanisms by which cooperation operates is critical in understanding ecological and evolutionary relationships. Over the past decade, synthetic biology has emerged as a powerful tool to study social dynamics. By engineering rationally controlled and modulatable behavior into microbes, we have increased our overall understanding of how cooperation enhances, or conversely constrains, populations. Furthermore, it has increased our understanding of how cooperation is maintained within populations, which may provide a useful framework to influence populations by altering cooperation. As many bacterial pathogens require cooperation to infect the host and survive, the principles developed using synthetic biology offer promise of developing novel tools and strategies to treat infections, which may reduce the use of antimicrobial agents. Overall, the use of engineered cooperative microbes has allowed the field to verify existing, and develop novel, theories that may govern cooperative behaviors at all levels of biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nowak M A. Five rules for the evolution of cooperation. Science, 2006, 314(5805): 1560–1563

    Article  PubMed  PubMed Central  Google Scholar 

  2. Axelrod R, Hamilton W D. The evolution of cooperation. Science, 1981, 211(4489): 1390–1396

    Article  PubMed  CAS  Google Scholar 

  3. Fehr E, Fischbacher U. Social norms and human cooperation. Trends in Cognitive Sciences, 2004, 8(4): 185–190

    Article  PubMed  Google Scholar 

  4. Shan W, Hamilton W. Country—specific advantage and international cooperation. Strategic Management Journal, 1991, 12(6): 419–432

    Article  Google Scholar 

  5. Hardin G. The tragedy of the commons. Science, 1968, 162(3859): 1243–1248

    Article  PubMed  CAS  Google Scholar 

  6. Feeny D, Berkes F, McCay B J, Acheson J M. The tragedy of the commons: twenty-two years later. Human Ecology, 1990, 18(1): 1–19

    Article  PubMed  CAS  Google Scholar 

  7. Hamilton W. The evolution of altruistic behavior. American Naturalist, 1963, 97(896): 354–356

    Article  Google Scholar 

  8. Eldakar O T, Wilson D S. Eight criticisms not to make about group selection. Evolution, 2011, 65(6): 1523–1526

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wilson D S, Wilson E O. Rethinking the theoretical foundation of sociobiology. Quarterly Review of Biology, 2007, 82(4): 327–348

    Article  Google Scholar 

  10. Rapoport A, Chammah A M. Prisoner’s dilemma: A study in conflict and cooperation. Michigan: University of Michigan press, 1965: 31–44

    Book  Google Scholar 

  11. Doebeli M, Hauert C. Models of cooperation based on the Prisoner’s Dilemma and the Snowdrift game. Ecology Letters, 2005, 8(7): 748–766

    Article  Google Scholar 

  12. Allee W C. Cooperation among animals. American Journal of Sociology, 1951, 1: 93–95

    Google Scholar 

  13. Seger J. Cooperation and conflict in social insects. Behavioural Ecology: An Evolutionary Approach, 1991, 338–373

    Google Scholar 

  14. West S A, El Mouden C, Gardner A. Sixteen common misconceptions about the evolution of cooperation in humans. Evolution and Human Behavior, 2011, 32(4): 231–262

    Article  Google Scholar 

  15. Gintis H, Bowles S, Boyd R, Fehr E. Explaining altruistic behavior in humans. Evolution and Human Behavior, 2003, 24(3): 153–172

    Article  Google Scholar 

  16. Sober E, Wilson D S. Unto others: The evolution and psychology of unselfish behavior. Massachusetts: Harvard University Press, 1999, 6–14

    Google Scholar 

  17. Tanouchi Y, Smith R, You L. Engineering microbial systems to explore ecological and evolutionary dynamics. Current Opinion in Biotechnology, 2012, 23(5): 791–797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Benner S A, Sismour A M. Synthetic biology. Nature Reviews. Genetics, 2005, 6(7): 533–543

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Jusiak B, Daniel R, Farzadfard F, Nissim L, Purcell O, Rubens J, Lu T K. Synthetic gene circuits. Reviews in Cell Biology and Molecular Medicine, 2014, 1–56

    Google Scholar 

  20. Khalil A S, Collins J J. Synthetic biology: Applications come of age. Nature Reviews. Genetics, 2010, 11(5): 367–379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bracho O R, Manchery C, Haskell E C, Blanar C A, Smith R P. Circumvention of learning increases intoxication efficacy of nematicidal engineered bacteria. ACS Synthetic Biology, 2016, 5(3): 241–249

    Article  PubMed  CAS  Google Scholar 

  22. Escalante A E, Rebolleda-Gómez M, Benítez M, Travisano M. Ecological perspectives on synthetic biology: Insights from microbial population biology. Frontiers in Microbiology, 2015, 6: 1–10

    Article  Google Scholar 

  23. Pianka E R. On r-and K-selection. American Naturalist, 1970, 104(940): 592–597

    Article  Google Scholar 

  24. Miller M B, Bassler B L. Quorum sensing in bacteria. Annual Review of Microbiology, 2001, 55(1): 165–199

    Article  PubMed  CAS  Google Scholar 

  25. Berendsen R L, Pieterse C M, Bakker P A. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8): 478–486

    Article  PubMed  CAS  Google Scholar 

  26. Antunes L C M, Ferreira R B R, Buckner M M C, Finlay B B. Quorum sensing in bacterial virulence. Microbiology, 2010, 156(8): 2271–2282

    Article  PubMed  CAS  Google Scholar 

  27. De Kievit T R, Gillis R, Marx S, Brown C, Iglewski B H. Quorumsensing genes in Pseudomonas aeruginosa biofilms: Their role and expression patterns. Applied and Environmental Microbiology, 2001, 67(4): 1865–1873

    Article  PubMed  PubMed Central  Google Scholar 

  28. De Kievit T R, Iglewski B H. Bacterial quorum sensing in pathogenic relationships. Infection and Immunity, 2000, 68(9): 4839–4849

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stewart P S, Costerton J W. Antibiotic resistance of bacteria in biofilms. Lancet, 2001, 358(9276): 135–138

    Article  PubMed  CAS  Google Scholar 

  30. Darch S E, West S A, Winzer K, Diggle S P. Density-dependent fitness benefits in quorum-sensing bacterial populations. Proceedings of the National Academy of Sciences, 2012: 8259–8263

    Google Scholar 

  31. Pai A, Tanouchi Y, You L. Optimality and robustness in quorum sensing (QS)-mediated regulation of a costly public good enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(48): 19810–19815

    Article  PubMed  PubMed Central  Google Scholar 

  32. An J H, Goo E, Kim H, Seo Y S, Hwang I. An J H, Goo E, Kim H, Seo Y-S, Hwang I. Bacterial quorum sensing and metabolic slowing in a cooperative population. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(41): 14912–14917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Allee W, Emerson A, Park O, Park T, Schmidt K. Principles of Animal Ecology. Philadelphia, Pennsylvania, USA, 1949, 416–425

    Google Scholar 

  34. Driscoll W W, Espinosa N J, Eldakar O T, Hackett J D. Allelopathy as an emergent, exploitable public good in the bloom-forming microalga Prymnesium parvum. Evolution, 2013, 67(6): 1582–1590

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liebhold A M, Tobin P C. Exploiting the Achilles heels of pest invasions: Allee effects, stratified dispersal and management of forest insect establishment and spread. New Zealand Journal of Forestry Science, 2010, 40: S25–S33

    Google Scholar 

  36. Robinet C, Lance D R, Thorpe K W, Onufrieva K S, Tobin P C, Liebhold A M. Dispersion in time and space affect mating success and Allee effects in invading gypsy moth populations. Journal of Animal Ecology, 2008, 77(5): 966–973

    Article  CAS  Google Scholar 

  37. Tobin P C, Berec L, Liebhold A M. Exploiting Allee effects for managing biological invasions. Ecology Letters, 2011, 14(6): 615–624

    Article  PubMed  Google Scholar 

  38. Hackney E E, McGraw J B. Experimental demonstration of an Allee effect in American ginseng. Conservation Biology, 2001, 15(1): 129–136

    Article  Google Scholar 

  39. Smith R, Tan C, Srimani J, Pai A, Riccione K, Song H, You L. Programmed Allee effect results in a tradeoff between population spread and survival. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(5): 1969–1974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Myers R A, Hutchings J A, Barrowman N J. Why do fish stocks collapse? The example of cod in Atlantic Canada. Ecological Applications, 1997, 7(1): 91–106

    Article  Google Scholar 

  41. Myers R, Barrowman N, Hutchings J, Rosenberg A. Population dynamics of exploited fish stocks at low population levels. Science, 1995, 269(5227): 1106–1108

    Article  PubMed  CAS  Google Scholar 

  42. Dai L, Vorselen D, Korolev K S, Gore J. Generic indicators for loss of resilience before a tipping point leading to population collapse. Science, 2012, 336(6085): 1175–1177

    Article  PubMed  CAS  Google Scholar 

  43. Dai L, Korolev K S, Gore J. Relation between stability and resilience determines the performance of early warning signals under different environmental drivers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(32): 10056–10061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Liebhold A M, Tobin P C. Population ecology of insect invasions and their management. Annual Review of Entomology, 2008, 53(1): 387–408

    Article  PubMed  CAS  Google Scholar 

  45. Visick K L, Foster J, Doino J, McFall-Ngai M, Ruby E G. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. Journal of Bacteriology, 2000, 182(16): 4578–4586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Bahassi E M, O’Dea M H, Allali N, Messens J, Gellert M, Couturier M. Interactions of CcdB with DNA gyrase. Journal of Biological Chemistry, 1999, 274(16): 10936–10944

    Article  CAS  Google Scholar 

  47. Dai L, Korolev K S, Gore J. Slower recovery in space before collapse of connected populations. Nature, 2013, 496(7445): 355–358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ratzke C, Gore J. Self-organized patchiness facilitates survival in a cooperatively growing Bacillus subtilis population. Nature Microbiology, 2016: 16022

    Google Scholar 

  49. Wong C M, Zhou Y, Ng R W, Kung H F, Jin D Y. Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. Journal of Biological Chemistry, 2002, 277(7): 5385–5394

    Article  CAS  Google Scholar 

  50. Boulant J A. Hypothalamic mechanisms in thermoregulation. Federation Proceedings, 1981, 40(14): 2843-50

    PubMed  CAS  Google Scholar 

  51. Stephens P A, Frey-Roos F, Arnold W, Sutherland W J. Model complexity and population predictions. The alpine marmot as a case study. Journal of Animal Ecology, 2002, 71(2): 343–361

    Google Scholar 

  52. Liermann H, Hilborn. Depensation: Evidence, models and implications. Fish and Fisheries, 2001, 2(1): 33–58

    Article  Google Scholar 

  53. Aizenman E, Engelberg-Kulka H, Glaser G. An Escherichia coli chromosomal “addiction module” regulated by guanosine 3',5'-bispyrophosphate: A model for programmed bacterial cell death. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(12): 6059–6063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Misselwitz B, Barrett N, Kreibich S, Vonaesch P, Andritschke D, Rout S, Weidner K, Sormaz M, Songhet P, Horvath P, Chabria M, Vogel V, Spori D M, Jenny P, Hardt W D. Near surface swimming of Salmonella typhimurium explains target-site selection and cooperative invasion. PLoS Pathogens, 2012, 8(7): e1002810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Tan C, Smith R P, Srimani J, Riccione K, Prasada S, Kuehn M, You L. The inoculum effect and band-pass bacterial response to periodic antibiotic treatment. Molecular Systems Biology, 2012, 8(1): 679–688

    Google Scholar 

  56. Lee H H, Molla M N, Cantor C R, Collins J J. Bacterial charity work leads to population-wide resistance. Nature, 2010, 467(7311): 82–85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Vega N M, Allison K R, Samuels A N, Klempner M S, Collins J J. Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(35): 14420–14425

    Article  PubMed  PubMed Central  Google Scholar 

  58. Meredith H R, Srimani J K, Lee A J, Lopatkin A J, You L. Collective antibiotic tolerance: Mechanisms, dynamics and intervention. Nature Chemical Biology, 2015, 11(3): 182–188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Nedelcu A M, Driscoll W W, Durand P M, Herron M D, Rashidi A. On the paradigm of altruistic suicide in the unicellular world. Evolution, 2011, 65(1): 3–20

    Article  PubMed  Google Scholar 

  60. Ackermann M, Stecher B, Freed N E, Songhet P, Hardt W D, Doebeli M. Self-destructive cooperation mediated by phenotypic noise. Nature, 2008, 454(7207): 987–990

    Article  PubMed  CAS  Google Scholar 

  61. Rice K C, Bayles K W. Death’s toolbox: Examining the molecular components of bacterial programmed cell death. Molecular Microbiology, 2003, 50(3): 729–738

    Article  PubMed  CAS  Google Scholar 

  62. Ameisen J C. The origin of programmed cell death. Science, 1996, 272(5266): 1278–1279

    Article  PubMed  CAS  Google Scholar 

  63. Brown S P, West S A, Diggle S P, Griffin A S. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2009, 364(1533): 3157–3168

    Article  PubMed  PubMed Central  Google Scholar 

  64. Moran N A, Degnan P H, Santos S R, Dunbar H E, Ochman H. The players in a mutualistic symbiosis: Insects, bacteria, viruses, and virulence genes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(47): 16919–16926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Breznak J A. Symbiotic relationships between termites and their intestinal microbiota. Symposia of the Society for Experimental Biology, 1975, 29: 559–580

    Google Scholar 

  66. Glaser R. The intracellular bacteria of the cockroach in relation to symbiosis. Journal of Parasitology, 1946, 32(5): 483–489

    Article  CAS  Google Scholar 

  67. Uhlig H H, Powrie F. Dendritic cells and the intestinal bacterial flora: a role for localized mucosal immune responses. Journal of Clinical Investigation, 2003, 112(5): 648–651

    Article  PubMed Central  CAS  Google Scholar 

  68. Wintermute E H, Silver P A. Dynamics in the mixed microbial concourse. Genes & Development, 2010, 24(23): 2603–2614

    Article  CAS  Google Scholar 

  69. Wintermute E H, Silver P A. Emergent cooperation in microbial metabolism. Molecular Systems Biology, 2010, 6(1): 820–833

    Google Scholar 

  70. Shou W, Ram S, Vilar J M G. Synthetic cooperation in engineered yeast populations. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(6): 1877–1882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Brenner K, Karig D K, Weiss R, Arnold F H. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(44): 17300–17304

    Article  PubMed  PubMed Central  Google Scholar 

  72. Brenner K, You L, Arnold F H. Engineering microbial consortia: A new frontier in synthetic biology. Trends in Biotechnology, 2008, 26(9): 483–489

    Article  PubMed  CAS  Google Scholar 

  73. Hu B, Du J, Zou R Y, Yuan Y J. An environment-sensitive synthetic microbial ecosystem. PLoS One, 2010, 5(5): e10619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kerner A, Park J, Williams A, Lin X N. A programmable Escherichia coli consortium via tunable symbiosis. PLoS One, 2012, 7(3): e34032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Mee M T, Collins J J, Church G M, Wang H H. Syntrophic exchange in synthetic microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20): 2149–2156

    Article  CAS  Google Scholar 

  76. Berryman A A. The orgins and evolution of predator-prey theory. Ecology, 1992, 73(5): 1530–1535

    Article  Google Scholar 

  77. Balagadde F K, Song H, Ozaki J, Collins C H, Barnet M, Arnold F H, Quake S R, You L. A synthetic Escherichia coli predator-prey ecosystem. Molecular Systems Biology, 2008, 4: 187

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wangersky P J. Lotka-Volterra population models. Annual Review of Ecology and Systematics, 1978, 9(1): 189–218

    Article  Google Scholar 

  79. Sun G Q, Jin Z, Liu Q X, Li L. Dynamical complexity of a spatial predator-prey model with migration. Ecological Modelling, 2008, 219(1-2): 248–255

    Article  Google Scholar 

  80. Yuan S, Xu C, Zhang T. Spatial dynamics in a predator-prey model with herd behavior. Chaos (Woodbury, N.Y.), 2013, 23(3): 033102

    Article  Google Scholar 

  81. Song H, Payne S, Gray M, You L. Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem. Nature Chemical Biology, 2009, 5(12): 929–935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Yamamura N, Higashi M, Behera N, YuichiroWakano J. Evolution of mutualism through spatial effects. Journal of Theoretical Biology, 2004, 226(4): 421–428

    Article  PubMed  Google Scholar 

  83. Poisot T, Bever J D, Thrall P H, Hochberg M E. Dispersal and spatial heterogeneity allow coexistence between enemies and protective mutualists. Ecology and Evolution, 2014, 4(19): 3841–3850

    Article  PubMed  PubMed Central  Google Scholar 

  84. Park J, Kerner A, Burns M A, Lin X N. Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One, 2011, 6(2): e17019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wilson W, Morris W, Bronstein J. Coexistence of mutualists and exploiters on spatial landscapes. Ecological Monographs, 2003, 73(3): 397–413

    Article  Google Scholar 

  86. Brenner K, Arnold F H. Self-organization, layered structure, and aggregation enhance persistence of a synthetic biofilm consortium. PLoS One, 2011, 6(2): e16791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Chuang J S, Rivoire O, Leibler S. Cooperation and Hamilton’s rule in a simple synthetic microbial system. Molecular Systems Biology, 2010, 6: 398

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chuang J S, Rivoire O, Leibler S. Simpson’s paradox in a synthetic microbial system. Science, 2009, 323(5911): 272–275

    Article  PubMed  CAS  Google Scholar 

  89. Gore J, Youk H, van Oudenaarden A. Snowdrift game dynamics and facultative cheating in yeast. Nature, 2009, 459(7244): 253–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Griffin A S, West S A, Buckling A. Cooperation and competition in pathogenic bacteria. Nature, 2004, 430(7003): 1024–1027

    Article  PubMed  CAS  Google Scholar 

  91. West S A, Pen I, Griffin A S. Cooperation and competition between relatives. Science, 2002, 296(5565): 72–75

    Article  PubMed  CAS  Google Scholar 

  92. Celiker H, Gore J. Competition between species can stabilize public—goods cooperation within a species. Molecular Systems Biology, 2012, 8(1): 621

    PubMed  PubMed Central  Google Scholar 

  93. Bergstrom T, Blume L, Varian H. On the private provision of public goods. Journal of Public Economics, 1986, 29(1): 25–49

    Article  Google Scholar 

  94. Driscoll W W, Pepper J W. Theory for the evolution of diffusible external goods. Evolution, 2010, 64(9): 2682–2687

    Article  PubMed  Google Scholar 

  95. Zhang F, Kwan A, Xu A, Süel G M. A synthetic quorum sensing system reveals a potential private benefit for public good production in a biofilm. PLoS One, 2015, 10(7): e0132948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Waite A J, Shou W. Adaptation to a new environment allows cooperators to purge cheaters stochastically. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19079–19086

    Article  PubMed  PubMed Central  Google Scholar 

  97. Chen A, Sanchez A, Dai L, Gore J. Dynamics of a producerfreeloader ecosystem on the brink of collapse. Nature Communications, 2014, 5: 3713

    Article  PubMed  CAS  Google Scholar 

  98. Venturi V, Bertani I, Kerényi Á, Netotea S, Pongor S. Coswarming and local collapse: Quorum sensing conveys resilience to bacterial communities by localizing cheater mutants in Pseudomonas aeruginosa. PLoS One, 2010, 5(4): e9998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Bihary D, Tóth M, Kerényi Á, Venturi V, Pongor S. Modeling bacterial quorum sensing in open and closed environments: potential discrepancies between agar plate and culture flask experiments. Journal of Molecular Modeling, 2014, 20(7): 1–6

    Article  Google Scholar 

  100. Pepper J W. The evolution of bacterial social life: From the ivory tower to the front lines of public health. Evolution, Medicine, and Public Health, 2014, 2014(1): 65–68

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ross-Gillespie A, Weigert M, Brown S P, Kümmerli R. Galliummediated siderophore quenching as an evolutionarily robust antibacterial treatment. Evolution, Medicine, and Public Health, 2014, 2014(1): 18–29

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hood M I, Skaar E P. Nutritional immunity: Transition metals at the pathogen-host interface. Nature Reviews. Microbiology, 2012, 10(8): 525–537

    Article  PubMed  CAS  Google Scholar 

  103. Skaar E P. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathogens, 2010, 6(8): e1000949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Köhler T, Buckling A, van Delden C. Cooperation and virulence of clinical Pseudomonas aeruginosa populations. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(15): 6339–6344

    Article  PubMed  PubMed Central  Google Scholar 

  105. Merlo L M F, Pepper J W, Reid B J, Maley C C. Cancer as an evolutionary and ecological process. Nature Reviews. Cancer, 2006, 6(12): 924–935

    Article  PubMed  CAS  Google Scholar 

  106. Pepper J W. Defeating pathogen drug resistance: Guidance from evolutionary theory. Evolution, 2008, 62(12): 3185–3191

    Article  PubMed  Google Scholar 

  107. Boehm T, Folkman J, Browder T, O’Reilly M S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature, 1997, 390(6658): 404–407

    Article  PubMed  CAS  Google Scholar 

  108. Folkman J. Angiogenesis. Annual Review of Medicine, 2006, 57: 1–18

    Article  PubMed  CAS  Google Scholar 

  109. Duan F, March J C. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11260–11264

    Article  PubMed  PubMed Central  Google Scholar 

  110. Saeidi N, Wong C K, Lo T M, Nguyen H X, Ling H, Leong S S J, Poh C L, Chang MW. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Molecular Systems Biology, 2011, 7(1): 521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Our research is supported by a President’s Faculty Research and Development Grant #335318 and #335304 through Nova Southeastern University. The author’s declare that they do not have any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Smith.

Additional information

Dr. Robert P. Smith completed his undergraduate and graduate studies at Carleton University in Ottawa, Ontario, Canada. During his PhD, he worked with Dr. Myron Smith and studied nonself recognition in the filamentous fungus Neurospora crassa. He then transitioned to a post-doctoral position at Duke University where he was a Duke Scholar in Infectious Disease. Under the guidance of Dr. Lingchong You, he used systems and synthetic biology approaches to study antibiotic resistance and cooperation. Currently, Robert is an Assistant Professor in the Department of Biological Sciences at Nova Southeastern University in Fort Lauderdale, Florida. Work performed in his lab focuses primarily on using a synthetic biology approach to understand the principles driving intra- and interspecific cooperation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dressler, M.D., Clark, C.J., Thachettu, C.A. et al. Synthetically engineered microbes reveal interesting principles of cooperation. Front. Chem. Sci. Eng. 11, 3–14 (2017). https://doi.org/10.1007/s11705-016-1605-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-016-1605-z

Keywords

Navigation