Skip to main content
Log in

Cofactor engineering in cyanobacteria to overcome imbalance between NADPH and NADH: A mini review

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Cyanobacteria can produce useful renewable fuels and high-value chemicals using sunlight and atmospheric carbon dioxide by photosynthesis. Genetic manipulation has increased the variety of chemicals that cyanobacteria can produce. However, their uniquely abundant NADPH-pool, in other words insufficient supply of NADH, tends to limit their production yields in case of utilizing NADH-dependent enzyme, which is quite common in heterotrophic microbes. To overcome this cofactor imbalance and enhance cyanobacterial fuel and chemical production, various approaches for cofactor engineering have been employed. In this review, we focus on three approaches: (1) utilization of NADPH-dependent enzymes, (2) increasing NADH production, and (3) changing cofactor specificity of NADH-dependent enzymes from NADH to NADPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parmar A, Singh N K, Pandey A, Gnansounou E, Madamwar D. Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresource Technology, 2011, 102(22): 10163–10172

    Article  CAS  PubMed  Google Scholar 

  2. Machado I M, Atsumi S. Cyanobacterial biofuel production. Journal of Biotechnology, 2012, 162(1): 50–56

    Article  CAS  PubMed  Google Scholar 

  3. Nozzi N E, Oliver J W, Atsumi S. Cyanobacteria as a platform for biofuel production. Frontiers in Bioengineering and Biotechnology, 2013, 1: 1–6

    Article  Google Scholar 

  4. Deng M D, Coleman J R. Ethanol synthesis by genetic engineering in cyanobacteria. Applied and Environmental Microbiology, 1999, 65(2): 523–528

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dexter J, Fu P. Metabolic engineering of cyanobacteria for ethanol production. Energy & Environmental Science, 2009, 2(8): 857–864

    Article  CAS  Google Scholar 

  6. Gao Z, Zhao H, Li Z, Tan X, Lu X. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy & Environmental Science, 2012, 5(12): 9857–9865

    Article  CAS  Google Scholar 

  7. Choi Y N, Park J M. Enhancing biomass and ethanol production by increasing NADPH production in Synechocystis sp. PCC 6803. Bioresource Technology, 2016, 213: 54–57

    Article  CAS  PubMed  Google Scholar 

  8. Kusakabe T, Tatsuke T, Tsuruno K, Hirokawa Y, Atsumi S, Liao J C, Hanai T. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metabolic Engineering, 2013, 20: 101–108

    Article  CAS  PubMed  Google Scholar 

  9. Lan E I, Liao J C. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metabolic Engineering, 2011, 13(4): 353–363

    Article  CAS  PubMed  Google Scholar 

  10. Lan E I, Liao J C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6018–6023

    Article  PubMed  PubMed Central  Google Scholar 

  11. Atsumi S, Higashide W, Liao J C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nature Biotechnology, 2009, 27(12): 1177–1180

    Article  CAS  PubMed  Google Scholar 

  12. Angermayr S A, Paszota M, Hellingwerf K J. Engineering a cyanobacterial cell factory for production of lactic acid. Applied and Environmental Microbiology, 2012, 78(19): 7098–7106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Varman A M, Yu Y, You L, Tang Y J. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microbial Cell Factories, 2013, 12(1): 1–8

    Article  CAS  Google Scholar 

  14. Zhou J, Zhang H, Meng H, Zhang Y, Li Y. Production of optically pure D-lactate from CO2 by blocking the PHB and acetate pathways and expressing D-lactate dehydrogenase in cyanobacterium Synechocystis sp. PCC 6803. Process Biochemistry, 2014, 49(12): 2071–2077

    Article  CAS  Google Scholar 

  15. Angermayr S A, Van der Woude A D, Correddu D, Vreugdenhil A, Verrone V, Hellingwerf K J. Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnology for Biofuels, 2014, 7(1): 1–15

    Article  CAS  Google Scholar 

  16. Li C, Tao F, Ni J, Wang Y, Yao F, Xu P. Enhancing the light-driven production of D-lactate by engineering cyanobacterium using a combinational strategy. Scientific Reports, 2015, 5: 1–11

    Article  Google Scholar 

  17. Miyake M, Takase K, Narato M, Khatipov E, Schnackenberg J, Shirai M, Kurane R, Asada Y. Polyhydroxybutyrate production from carbon dioxide by cyanobacteria. Applied Biochemistry and Biotechnology, 2000, 84–86(1-9): 991–1002

    Article  PubMed  Google Scholar 

  18. Tyo K E, Jin Y S, Espinoza F A, Stephanopoulos G. Identification of gene disruptions for increased poly-3-hydroxybutyrate accumulation in Synechocystis PCC 6803. Biotechnology Progress, 2009, 25(5): 1236–1243

    Article  CAS  PubMed  Google Scholar 

  19. Zhou J, Zhu T, Cai Z, Li Y. From cyanochemicals to cyanofactories: A review and perspective. Microbial Cell Factories, 2016, 15(1): 1–9

    Article  CAS  Google Scholar 

  20. Wang Y, San K Y, Bennett G N. Cofactor engineering for advancing chemical biotechnology. Current Opinion in Biotechnology, 2013, 24(6): 994–999, 99

    Article  CAS  PubMed  Google Scholar 

  21. Akhtar MK, Jones P R. Cofactor Engineering for enhancing the flux of metabolic pathways. Frontiers in Bioengineering and Biotechnology, 2014, 2: 1–6

    Article  Google Scholar 

  22. Tamoi M, Miyazaki T, Fukamizo T, Shigeoka S. The calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. Plant Journal, 2005, 42(4): 504–513

    Article  CAS  PubMed  Google Scholar 

  23. Cooley J W, Vermaas W F. Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC 6803: Capacity comparisons and physiological function. Journal of Bacteriology, 2001, 183(14): 4251–4258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dempo Y, Ohta E, Nakayama Y, Bamba T, Fukusaki E. Molarbased targeted metabolic profiling of cyanobacterial strains with potential for biological production. Metabolites, 2014, 4(2): 499–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hirokawa Y, Maki Y, Tatsuke T, Hanai T. Cyanobacterial production of 1,3-propanediol directly from carbon dioxide using a synthetic metabolic pathway. Metabolic Engineering, 2016, 34: 97–103

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Liao J C. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. Microbial Cell Factories, 2013, 12(1): 1–9

    Article  CAS  Google Scholar 

  27. Oliver J W, Machado I M, Yoneda H, Atsumi S. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(4): 1249–1254

    Article  PubMed  PubMed Central  Google Scholar 

  28. Savakis P E, Angermayr S A, Hellingwerf K J. Synthesis of 2,3-butanediol by Synechocystis sp. PCC 6803 via heterologous expression of a catabolic pathway from lactic acid-and enterobacteria. Metabolic Engineering, 2013, 20: 121–130

    Article  CAS  PubMed  Google Scholar 

  29. Niederholtmeyer H, Wolfstadter B T, Savage D F, Silver P A, Way J C. Engineering cyanobacteria to synthesize and export hydrophilic products. Applied and Environmental Microbiology, 2010, 76(11): 3462–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McNeely K, Xu Y, Bennette N, Bryant D A, Dismukes G C. Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Applied and Environmental Microbiology, 2010, 76(15): 5032–5038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kumaraswamy G K, Guerra T, Qian X, Zhang S, Bryant D A, Dismukes G C. Reprogramming the glycolytic pathway for increased hydrogen production in cyanobacteria: Metabolic engineering of NAD+-dependent GAPDH. Energy & Environmental Science, 2013, 6(12): 3722–3731

    Article  CAS  Google Scholar 

  32. Jarboe L R, Yqh D. A broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Applied Microbiology and Biotechnology, 2011, 89(2): 249–257

    Article  CAS  PubMed  Google Scholar 

  33. Wee Y J, Kim J N, Ryu H W. Biotechnological production of lactic acid and its recent applications. Food Technology and Biotechnology, 2006, 44(2): 163–172

    CAS  Google Scholar 

  34. Joseph A, Aikawa S, Sasaki K, Tsuge Y, Matsuda F, Tanaka T, Kondo A. Utilization of lactic acid bacterial genes in Synechocystis sp. PCC 6803 in the production of lactic acid. Bioscience, Biotechnology, and Biochemistry, 2013, 77(5): 966–970

    Article  CAS  PubMed  Google Scholar 

  35. Polizzi K M, Chaparro-Riggers J F, Vazquez-Figueroa E, Bommarius A S. Structure-guided consensus approach to create a more thermostable penicillin G acylase. Biotechnology Journal, 2006, 1(5): 531–536

    Article  CAS  PubMed  Google Scholar 

  36. Terao Y, Miyamoto K, Ohta H. Introduction of single mutation changes arylmalonate decarboxylase to racemase. Chemical Communications, 2006, 34(34): 3600–3602

    Article  CAS  Google Scholar 

  37. Vázquez-Figueroa E, Chaparro-Riggers J, Bommarius A S. Development of a thermostable glucose dehydrogenase by a structure-guided consensus concept. ChemBioChem, 2007, 8(18): 2295–2301

    Article  CAS  PubMed  Google Scholar 

  38. Jochens H, Bornscheuer U T. Natural diversity to guide focused directed evolution. ChemBioChem, 2010, 11(13): 1861–1866

    Article  CAS  PubMed  Google Scholar 

  39. Ema T, Nakano Y, Yoshida D, Kamata S, Sakai T. Redesign of enzyme for improving catalytic activity and enantioselectivity toward poor substrates: Manipulation of the transition state. Organic & Biomolecular Chemistry, 2012, 10(31): 6299–6308

    Article  CAS  Google Scholar 

  40. Holmberg N, Ryde U, Bulow L. Redesign of the coenzyme specificity in l-lactate dehydrogenase from bacillus stearothermophilus using site-directed mutagenesis and media engineering. Protein Engineering, Design & Selection, 1999, 12(10): 851–856

    Article  CAS  Google Scholar 

  41. Ma C, Zhang L, Dai J, Xiu Z. Relaxing the coenzyme specificity of 1,3-propanediol oxidoreductase from Klebsiella pneumoniae by rational design. Journal of Biotechnology, 2010, 146(4): 173–178

    Article  CAS  PubMed  Google Scholar 

  42. Richter N, Zienert A, Hummel W. A single-point mutation enables lactate dehydrogenase from Bacillus subtilis to utilize NAD+ and NADP+ as cofactor. Engineering in Life Sciences, 2011, 11(1): 26–36

    Article  CAS  Google Scholar 

  43. Meng H, Liu P, Sun H, Cai Z, Zhou J, Lin J, Li Y. Engineering a Dlactate dehydrogenase that can super-efficiently utilize NADPH and NADH as cofactors. Scientific Reports, 2016, 6: 1–8

    Article  CAS  Google Scholar 

  44. Steiner K, Schwab H. Recent advances in rational approaches for enzyme engineering. Computational and Structural Biotechnology Journal, 2012, 2(3): 1–12

    Article  Google Scholar 

  45. Li Y, Cirino P C. Recent advances in engineering proteins for biocatalysis. Biotechnology and Bioengineering, 2014, 111(7): 1273–1287

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Marine Biotechnology Program (Marine BioMaterials Research Center) funded by the Ministry of Oceans and Fisheries, Korea, and BK21+ program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology. This work was also conducted under the framework of Research and Development Program of the Korea Institute of Energy Research (KIER) (B4-2474-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunnam Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Choi, Y. Cofactor engineering in cyanobacteria to overcome imbalance between NADPH and NADH: A mini review. Front. Chem. Sci. Eng. 11, 66–71 (2017). https://doi.org/10.1007/s11705-016-1591-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-016-1591-1

Keywords

Navigation