Skip to main content
Log in

Microfluidics for cell-cell interactions: A review

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Microfluidic chip has been applied in various biological fields owing to its low-consumption of reagents, high throughput, fluidic controllability and integrity. The well-designed microscale intermediary is also ideal for the study of cell biology. Particularly, microfluidic chip is helpful for better understanding cell-cell interactions. A general survey of recent publications would help to generalize the designs of the co-culture chips with different features. With ingenious and combinational utilization, the chips facilitate the implementation of some special coculture models that are highly concerned in a different spatial and temporal way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitesides GM. The origins and the future of microfluidics. Nature, 2006, 442(7101): 368–373

    Article  CAS  Google Scholar 

  2. Haeberle S, Zengerle R. Microfluidic platforms for lab-on-a-chip applications. Lab on a Chip, 2007, 7(9): 1094–1110

    Article  CAS  Google Scholar 

  3. Han K N, Li C A, Seong G H. Microfluidic chips for immunoassays. Annual Review of Analytical Chemistry (Palo Alto, Calif.), 2013, 6(1): 119–141

    Article  CAS  Google Scholar 

  4. Nan L, Jiang Z, Wei X. Emerging microfluidic devices for cell lysis: A review. Lab on a Chip, 2014, 14(6): 1060–1073

    Article  CAS  Google Scholar 

  5. Smejkal P, Bottenus D, Breadmore M C, Guijt R M, Ivory C F, Foret F, Macka M. Microfluidic isotachophoresis: A review. Electrophoresis, 2013, 34(11): 1493–1509

    Article  CAS  Google Scholar 

  6. Ma S, Loufakis D N, Cao Z, Chang Y, Achenie L, Lu C. Diffusionbased microfluidic PCR for “one-pot” analysis of cells. Lab on a Chip, 2014, 14(16): 2905–2909

    Article  CAS  Google Scholar 

  7. Sommer G J, Hatch A V, Singh A K, Wang Y C. Microfluidic device having an immobilized pH gradient and page gels for protein separation and analysis: US Patent 8728290, 2014-5-20

  8. Jebrail M J, Renzi R F, Sinha A, Van De Vreugde J, Gondhalekar C, Ambriz C, Meagher R J, Branda S S. A solvent replenishment solution for managing evaporation of biochemical reactions in airmatrix digital microfluidics devices. Lab on a Chip, 2015, 15(1): 151–158

    Article  CAS  Google Scholar 

  9. Ren K, Chen Y, Wu H. New materials for microfluidics in biology. Current Opinion in Biotechnology, 2014, 25: 78–85

    Article  CAS  Google Scholar 

  10. Sia S K, Whitesides G M. Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies. Electrophoresis, 2003, 24(21): 3563–3576

    Article  CAS  Google Scholar 

  11. Giulitti S, Magrofuoco E, Prevedello L, Elvassore N. Optimal periodic perfusion strategy for robust long-term microfluidic cell culture. Lab on a Chip, 2013, 13(22): 4430–4441

    Article  CAS  Google Scholar 

  12. Zhang Q, Liu T, Qin J. A microfluidic-based device for study of transendothelial invasion of tumor aggregates in realtime. Lab on a Chip, 2012, 12(16): 2837–2842

    Article  CAS  Google Scholar 

  13. Ziolkowska K, Jedrych E, Kwapiszewski R, Lopacinska J, Skolimowski M, Chudy M. PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage. Sensors and Actuators. B, Chemical, 2010, 145(1): 533–542

    Article  CAS  Google Scholar 

  14. El-Ali J, Sorger P K, Jensen K F. Cells on chips. Nature, 2006, 442(7101): 403–411

    Article  CAS  Google Scholar 

  15. Mehling M, Tay S. Microfluidic cell culture. Current Opinion in Biotechnology, 2014, 25: 95–102

    Article  CAS  Google Scholar 

  16. Xiong B, Ren K, Shu Y, Chen Y, Shen B, Wu H. Recent developments in microfluidics for cell studies. Advanced Materials, 2014, 26(31): 5525–5532

    Article  CAS  Google Scholar 

  17. Nge P N, Rogers C I, Woolley A T. Advances in microfluidic materials, functions, integration, and applications. Chemical Reviews, 2013, 113(4): 2550–2583

    Article  CAS  Google Scholar 

  18. Torisawa Y S, Mosadegh B, Luker G D, Morell M, O’Shea K S, Takayama S. Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids. Integrative Biology, 2009, 1(11-12): 649–654

    Article  CAS  Google Scholar 

  19. Skafte-Pedersen P, Hemmingsen M, Sabourin D, Blaga F S, Bruus H, Dufva M. A self-contained, programmable microfluidic cell culture system with real-time microscopy access. Biomedical Microdevices, 2012, 14(2): 385–399

    Article  CAS  Google Scholar 

  20. Wang D Y, Wu S C, Lin S P, Hsiao S H, Chung T W, Huang Y Y. Evaluation of transdifferentiation from mesenchymal stem cells to neuron-like cells using microfluidic patterned co-culture system. Biomedical Microdevices, 2011, 13(3): 517–526

    Article  CAS  Google Scholar 

  21. Wei C W, Cheng J Y, Young T H. Elucidating In vitro cell-cell interaction using a microfluidic coculture system. Biomedical Microdevices, 2006, 8(1): 65–71

    Article  CAS  Google Scholar 

  22. Kobel S, Valero A, Latt J, Renaud P, Lutolf M. Optimization of microfluidic single cell trapping for long-term on-chip culture. Lab on a Chip, 2010, 10(7): 857–863

    Article  CAS  Google Scholar 

  23. Mazutis L, Gilbert J, Ung WL, Weitz D A, Griffiths A D, Heyman J A. Single-cell analysis and sorting using droplet-based microfluidics. Nature Protocols, 2013, 8(5): 870–891

    Article  CAS  Google Scholar 

  24. Yin H, Marshall D. Microfluidics for single cell analysis. Current Opinion in Biotechnology, 2012, 23(1): 110–119

    Article  CAS  Google Scholar 

  25. Kim L, Toh Y C, Voldman J, Yu H. A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab on a Chip, 2007, 7(6): 681–694

    Article  CAS  Google Scholar 

  26. Huang C P, Lu J, Seon H, Lee A P, Flanagan L A, Kim H Y, Putnam A J, Jeon N L. Engineering microscale cellular niches for threedimensional multicellular co-cultures. Lab on a Chip, 2009, 9(12): 1740–1748

    Article  CAS  Google Scholar 

  27. Liu T, Lin B, Qin J. Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device. Lab on a Chip, 2010, 10(13): 1671–1677

    Article  CAS  Google Scholar 

  28. Zhou M, Ma H, Lin H, Qin J. Induction of epithelial-tomesenchymal transition in proximal tubular epithelial cells on microfluidic devices. Biomaterials, 2014, 35(5): 1390–1401

    Article  CAS  Google Scholar 

  29. Unger M A, Chou H P, Thorsen T, Scherer A, Quake S R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 2000, 288(5463): 113–116

    Article  CAS  Google Scholar 

  30. Liu A, Liu W, Wang Y, Wang J C, Tu Q, Liu R, Xu J, Shen S, Wang J. Microvalve and liquid membrane double-controlled integrated microfluidics for observing the interaction of breast cancer cells. Microfluidics and Nanofluidics, 2012, 14(3-4): 515–526

    Article  Google Scholar 

  31. Majumdar D, Gao Y, Li D, Webb D J. Co-culture of neurons and glia in a novel microfluidic platform. Journal of Neuroscience Methods, 2011, 196(1): 38–44

    Article  Google Scholar 

  32. Gao Y, Majumdar D, Jovanovic B, Shaifer C, Lin P C, Zijlstra A, Webb D J, Li D. A versatile valve-enabled microfluidic cell coculture platform and demonstration of its applications to neurobiology and cancer biology. Biomedical Microdevices, 2011, 13(3): 539–548

    Article  CAS  Google Scholar 

  33. Liu W, Li L, Wang X, Ren L, Wang X, Wang J, Tu Q, Huang X, Wang J. An integrated microfluidic system for studying cellmicroenvironmental interactions versatilely and dynamically. Lab on a Chip, 2010, 10(13): 1717–1724

    Article  CAS  Google Scholar 

  34. Zheng C, Zhao L, Chen G, Zhou Y, Pang Y, Huang Y. Quantitative study of the dynamic tumor-endothelial cell interactions through an integrated microfluidic coculture system. Analytical Chemistry, 2012, 84(4): 2088–2093

    Article  CAS  Google Scholar 

  35. Brewer B M, Shi M, Edd J F, Webb D J, Li D. A microfluidic cell co-culture platform with a liquid fluorocarbon separator. Biomedical Microdevices, 2014, 16: 311–323

    Article  CAS  Google Scholar 

  36. Yeon J H, Ryu H R, Chung M, Hu Q P, Jeon N L. In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices. Lab on a Chip, 2012, 12(16): 2815–2822

    Article  CAS  Google Scholar 

  37. Businaro L, De Ninno A, Schiavoni G, Lucarini V, Ciasca G, Gerardino A, Belardelli F, Gabriele L, Mattei F. Cross talk between cancer and immune cells: Exploring complex dynamics in a microfluidic environment. Lab on a Chip, 2013, 13(2): 229–239

    Article  CAS  Google Scholar 

  38. Huang Y, Agrawal B, Clark P A, Williams J C, Kuo J S. Evaluation of cancer stem cell migration using compartmentalizing microfluidic devices and live cell imaging. Journal of Visualized Experiments, 2011, 58: 3297

    Google Scholar 

  39. De Jong J, Lammertink R G, Wessling M. Membranes and microfluidics: A review. Lab on a Chip, 2006, 6(9): 1125–1139

    Article  Google Scholar 

  40. Chen Q, Wu J, Zhuang Q, Lin X, Zhang J, Lin J M. Microfluidic isolation of highly pure embryonic stem cells using feeder-separated co-culture system. Scientific Reports, 2013, 3: 1–6

    Google Scholar 

  41. Sip C G, Bhattacharjee N, Folch A. Microfluidic transwell inserts for generation of tissue culture-friendly gradients in well plates. Lab on a Chip, 2014, 14(2): 302–314

    Article  CAS  Google Scholar 

  42. Ostrovidov S, Sakai Y, Fujii T. Integration of a pump and an electrical sensor into a membrane-based PDMS microbioreactor for cell culture and drug testing. Biomedical Microdevices, 2011, 13(5): 847–864

    Article  CAS  Google Scholar 

  43. Van Dersarl J J, Xu A M, Melosh N A. Rapid spatial and temporal controlled signal delivery over large cell culture areas. Lab on a Chip, 2011, 11(18): 3057–3063

    Article  Google Scholar 

  44. Jang K J, Suh K Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab on a Chip, 2010, 10(1): 36–42

    Article  CAS  Google Scholar 

  45. Ramadan Q, Jafarpoorchekab H, Huang C, Silacci P, Carrara S, Koklu G, Ghaye J, Ramsden J, Ruffert C, Vergeres G, Gijs M A. NutriChip: Nutrition analysis meets microfluidics. Lab on a Chip, 2013, 13(2): 196–203

    Article  CAS  Google Scholar 

  46. Miura S, Morimoto Y, Takeuchi S. Multi-layered placental barrier structure integrated with microfluidic channels. 2013 IEEE 26th International Conference. IEEE, 2013: 257–258

    Google Scholar 

  47. Lee Y. Sudo R, Komatsu T, Miki N, Mitaka T, Ikeda M, Tanishita K. Pattern microfluidic hydrostatic deposition patterning for a confined hepatocyte-biliary epithelial cell co-culture system. 2011 International Symposium. IEEE, 2011: 10–15

    Google Scholar 

  48. Chin L K, Luo K Q, Park W. Double-layer hepatocyte tumor coculture using hydrogel for drug affectivity and specificity analysis. 2012 IEEE 25th International Conference. IEEE, 2012: 808–811

    Google Scholar 

  49. Liu Z, Shum H C. Fabrication of uniform multi-compartment particles using microfludic electrospray technology for cell coculture studies. Biomicrofluidics, 2013, 7(4): 044117

    Article  Google Scholar 

  50. Shi M, Majumdar D, Gao Y, Brewer B M, Goodwin C R, McLean J A, Li D, Webb D J. Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts. Lab on a Chip, 2013, 13(15): 3008–3021

    Article  CAS  Google Scholar 

  51. Sudo R, Chung S, Zervantonakis I K, Vickerman V, Toshimitsu Y, Griffith L G, Kamm R D. Transport-mediated angiogenesis in 3D epithelial coculture. FASEB Journal, 2009, 23(7): 2155–2164

    Article  CAS  Google Scholar 

  52. Purtscher M, Rothbauer M, Holnthoner W, Redl H, Ertl P. Establishment of Vascular Networks in Biochips Using Co-cultures of Adipose Derived Stem Cells and Endothelial Cells in a 3D Fibrin Matrix. 6th European Conference of the International Federation for Medical and Biological Engineering. Springer International Publishing, 2015: 313–317

    Google Scholar 

  53. Chen M B, Srigunapalan S, Wheeler A R, Simmons C A. A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions. Lab on a Chip, 2013, 13(13): 2591–2598

    Article  CAS  Google Scholar 

  54. Chung S, Sudo R, Mack P J, Wan C R, Vickerman V, Kamm R D. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab on a Chip, 2009, 9(2): 269–275

    Article  CAS  Google Scholar 

  55. Ioannis K, Zervantonakis S K H A, Joseph L, Charestd J L. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(34): 13151–13520

    Google Scholar 

  56. Xie Y, Zhang W, Wang L, Sun K, Sun Y, Jiang X. A microchipbased model wound with multiple types of cells. Lab on a Chip, 2011, 11(17): 2819–2822

    Article  CAS  Google Scholar 

  57. Ricci C, Moroni L, Danti S. Cancer tissue engineering-new perspectives in understanding the biology of solid tumours-a critical review. OA Tissue Engineering, 2013, 1(1): 4

    Article  Google Scholar 

  58. Ma H, Liu T, Qin J, Lin B. Characterization of the interaction between fibroblasts and tumor cells on a microfluidic co-culture device. Electrophoresis, 2010, 31(10): 1599–1605

    Article  CAS  Google Scholar 

  59. Hockemeyer K, Janetopoulos C, Terekhov A, Hofmeister W, Vilgelm A, Costa L, Wikswo J, Richmond A. Engineered threedimensional microfluidic device for interrogating cell-cell interactions in the tumor microenvironment. Biomicrofluidics, 2014, 8(4): 044105

    Article  CAS  Google Scholar 

  60. Ye N, Qin J, Shi W, Liu X, Lin B. Cell-based high content screening using an integrated microfluidic device. Lab on a Chip, 2007, 7(12): 1696–1704

    Article  CAS  Google Scholar 

  61. Yang Y, Yang X, Zou J, Jia C, Hu Y, Du H, Wang H. Evaluation of photodynamic therapy efficiency using an In vitro three-dimensional microfluidic breast cancer tissue model. Lab on a Chip, 2015, 15(3): 735–744

    Article  CAS  Google Scholar 

  62. Agliari E, Biselli E, De Ninno A, Schiavoni G, Gabriele L, Gerardino A, Mattei F, Barra A, Businaro L. Cancer-driven dynamics of immune cells in a microfluidic environment. Scientific Reports, 2014, 4: 1–15

    Google Scholar 

  63. Hsu T H, Kao Y L, Lin WL, Xiao J L, Kuo P L, Wu C W, Liao WY, Lee C H. The migration speed of cancer cells influenced by macrophages and myofibroblasts co-cultured in a microfluidic chip. Integrative Biology, 2012, 4(2): 177–182

    Article  CAS  Google Scholar 

  64. Park J Y, Kim H O, Kim K D, Kim S K, Lee S K, Jung H. Monitoring the status of T-cell activation in a microfluidic system. Analyst (London), 2011, 136(13): 2831–2836

    Article  CAS  Google Scholar 

  65. Charwat V, Rothbauer M, Tedde S F, Hayden O, Bosch J J, Muellner P, Hainberger R, Ertl P. Monitoring dynamic interactions of tumor cells with tissue and immune cells in a lab-on-a-chip. Analytical Chemistry, 2013, 85(23): 11471–11478

    Article  CAS  Google Scholar 

  66. Muoz-Pinedo C, Green D R, van den Berg C A. Confocal restricted-height imaging of suspension cells (CRISC) in a PDMS microdevice during apoptosis. Lab on a Chip, 2005, 5(6): 628–633

    Article  Google Scholar 

  67. Li P, Stratton Z S, Dao M, Ritz J, Huang T J. Probing circulating tumor cells in microfluidics. Lab on a Chip, 2013, 13(4): 602–609

    Article  CAS  Google Scholar 

  68. Millet L J, Stewart M E, Sweedler J V, Nuzzo R G, Gillette M U. Microfluidic devices for culturing primary mammalian neurons at low densities. Lab on a Chip, 2007, 7(8): 987–994

    Article  CAS  Google Scholar 

  69. Millet L J, Stewart M E, Nuzzo R G, Gillette M U. Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. Lab on a Chip, 2010, 10(12): 1525–1535

    Article  CAS  Google Scholar 

  70. Wang J, Ren L, Li L, Liu W, Zhou J, Yu W, Tong D, Chen S. Microfluidics: A new cosset for neurobiology. Lab on a Chip, 2009, 9(5): 644–652

    Article  CAS  Google Scholar 

  71. Millet L J, Gillette MU. New perspectives on neuronal development via microfluidic environments. Trends in Neurosciences, 2012, 35(12): 752–761

    Article  CAS  Google Scholar 

  72. Dinh N D, Chiang Y Y, Hardelauf H, Baumann J, Jackson E, Waide S, Sisnaiske J, Frimat J P, van Thriel C, Janasek D, Peyrin JM, West J. Microfluidic construction of minimalistic neuronal co-cultures. Lab on a Chip, 2013, 13(7): 1402–1412

    Article  CAS  Google Scholar 

  73. Park J, Koito H, Li J, Han A. Microfluidic compartmentalized coculture platform for CNS axon myelination research. Biomedical Microdevices, 2009, 11(6): 1145–1153

    Article  CAS  Google Scholar 

  74. Peyrin J M, Deleglise B, Saias L, Vignes M, Gougis P, Magnifico S, Betuing S, Pietri M, Caboche J, Vanhoutte P, Viovy J L, Brugg B. Axon diodes for the reconstruction of oriented neuronal networks in microfluidic chambers. Lab on a Chip, 2011, 11(21): 3663–3673

    Article  CAS  Google Scholar 

  75. Kunze A, Lengacher S, Dirren E, Aebischer P, Magistretti P J, Renaud P. Astrocyte-neuron co-culture on microchips based on the model of SOD mutation to mimic ALS. Integrative Biology, 2013, 5(7): 964–975

    Article  CAS  Google Scholar 

  76. Southam K A, King A E, Blizzard C A, McCormack G H, Dickson T C. Microfluidic primary culture model of the lower motor neuronneuromuscular junction circuit. Journal of Neuroscience Methods, 2013, 218(2): 164–169

    Article  Google Scholar 

  77. Kim H J, Huh D, Hamilton G, Ingber D E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsislike motions and flow. Lab on a Chip, 2012, 12(12): 2165–2174

    Article  CAS  Google Scholar 

  78. Kim J, Hegde M, Jayaraman A. Co-culture of epithelial cells and bacteria for investigating host-pathogen interactions. Lab on a Chip, 2010, 10(1): 43–50

    Article  CAS  Google Scholar 

  79. Hong JW, Song S, Shin J H. A novel microfluidic co-culture system for investigation of bacterial cancer targeting. Lab on a Chip, 2013, 13(15): 3033–3040

    Article  CAS  Google Scholar 

  80. Huh D, Hamilton G A, Ingber D E. From 3D cell culture to organson-chips. Trends in Cell Biology, 2011, 21(12): 745–754

    Article  CAS  Google Scholar 

  81. Kostadinova R, Boess F, Applegate D, Suter L, Weiser T, Singer T, Naughton B, Roth A. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity. Toxicology and Applied Pharmacology, 2013, 268(1): 1–16

    Article  CAS  Google Scholar 

  82. Lee S A, No D Y, Kang E, Ju J, Kim D S, Lee S H. Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte–hepatic stellate cell interactions and flow effects. Lab on a Chip, 2013, 13(18): 3529–3537

    Article  CAS  Google Scholar 

  83. Jang K J, Cho H S, Kang D H, Bae W G, Kwon T H, Suh K Y. Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integrative Biology, 2011, 3(2): 134–141

    Article  CAS  Google Scholar 

  84. Huh D, Fujioka H, Tung Y C, Futai N, Paine R, Grotberg J B, Takayama S. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(48): 18886–18891

    Article  CAS  Google Scholar 

  85. Huh D, Matthews B D, Mammoto A, Montoya-Zavala M, Hsin H Y, Ingber D E. Reconstituting organ-level lung functions on a chip. Science, 2010, 328(5986): 1662–1668

    Article  CAS  Google Scholar 

  86. Sung J H, Esch M B, Prot J M, Long C J, Smith A, Hickman J J, Shuler M L. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab on a Chip, 2013, 13(7): 1201–1212

    Article  CAS  Google Scholar 

  87. Chan C Y, Huang P H, Guo F, Ding X, Kapur V, Mai J D, Yuen P K, Huang T J. Accelerating drug discovery via organs-on-chips. Lab on a Chip, 2013, 13(24): 4697–4710

    Article  CAS  Google Scholar 

  88. Choucha-Snouber L, Aninat C, Grsicom L, Madalinski G, Brochot C, Poleni P E, Razan F, Guillouzo C G, Legallais C, Corlu A, Leclerc E. Investigation of ifosfamide nephrotoxicity induced in a liver-kidney co-culture biochip. Biotechnology and Bioengineering, 2013, 110(2): 597–608

    Article  CAS  Google Scholar 

  89. Novik E, Maguire T J, Chao P, Cheng K, Yarmush M L. A microfluidic hepatic coculture platform for cell-based drug metabolism studies. Biochemical Pharmacology, 2010, 79(7): 1036–1044

    Article  CAS  Google Scholar 

  90. Torisawa Y S, Spina C S, Mammoto T, Mammoto A, Weaver J C, Tat T, Collins J J, Ingber D E. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nature Methods, 2014, 11(6): 663–669

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulin Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Lv, X., Zhang, X. et al. Microfluidics for cell-cell interactions: A review. Front. Chem. Sci. Eng. 10, 90–98 (2016). https://doi.org/10.1007/s11705-015-1550-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-015-1550-2

Keywords

Navigation