Skip to main content
Log in

Transition metal-doped heteropoly catalysts for the selective oxidation of methacrolein to methacrylic acid

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Heteropoly compounds with the general formula Cs1M x+0.5 H3‒0.5x P1.2Mo11VO40 (M = Fe, Co, Ni, Cu or Zn) and Cs1Cu y H3‒2y P1.2Mo11VO40 (y = 0.1, 0.3 or 0.7) were synthesized and then used as catalysts for the selective oxidation of methacrolein to methacrylic acid. The effects of the transition metals on the structure and activity of the catalysts were investigated. FTIR spectra showed that the transition metal-doped catalysts maintained the Keggin structure of the undoped catalysts. X-ray diffraction results indicated that before calcination, the catalysts doped with Fe and Cu had cubic secondary structures, while the catalysts doped with Co, Ni or Zn had both triclinic and cubic phases and the Co-doped catalyst had the highest content of the triclinic form. Thermal treatment can decrease the content of the triclinic phase. NH3 temperature-programmed desorption and H2 temperature- programmed reduction results showed that the transition metals changed the acid and redox properties of the catalysts. The addition of Fe or Cu had positive effects on the activities of the catalyst which is due to the improvement of the electron transfer between the Fe or Cu and the Mo. The effects of the copper content on structure and catalytic activity were also investigated. The Cs1Cu0.3H2P1.2Mo11VO40 catalyst had the best performance for the selective oxidation of methacrolein to methacrylic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langpape M, Millet J M M, Ozkan U S, Delichere P. Study of cesium or cesium-transition metal-substituted Keggin-type phosphomolybdic acid as isobutane oxidation catalysts. Journal of Catalysis, 1999, 182(1): 148–155

    Article  CAS  Google Scholar 

  2. Black J B, Claydon N J, Gai P L, Scott J D, Serwicke E M, Goodenough J B. Acrolein oxidation over 12-molybdophosphates: I. Characterization of the catalyst. Journal of Catalysis, 1987, 106(1): 1–15

    Article  CAS  Google Scholar 

  3. Shishido T, Inoue A, Konishi T, Matsuura I, Takehira K. Oxidation of isobutane over Mo-V-Sb mixed oxide catalyst. Chemistry Letters, 2000, 68: 215–221

    CAS  Google Scholar 

  4. Mizuno N, Misono M. Pore structure and surface-area of CsxH3-x PMo12O4O (x = 0-3, M= W, MO). Chemistry Letters, 1987, 16(5): 967–970

    Article  Google Scholar 

  5. Kendell S M, Brown T C. Detailed product and kinetic analysis for the low-pressure selective oxidation of isobutane over phosphomolybdic acid. Reaction Kinetics, Mechanisms and Catalysis, 2010, 99(2): 251–268

    CAS  Google Scholar 

  6. Marosi L, Cox G, Tenten A, Hibst H. In situ X R D investigations of heteropolyacid catalysts in the methacrolein to methacrylic acid oxidation reaction: Structural changes during the activation/deactivation process. Journal of Catalysis, 2000, 194(1): 140–145

    Article  CAS  Google Scholar 

  7. Kendell S M, Brown T C, Burns R C. Accurate low-pressure kinetics for isobutane oxidation over phosphomolybdic acid and copper(II) phosphomolybdates. Catalysis Today, 2008, 131(1-4): 526–532

    Article  CAS  Google Scholar 

  8. Komaya T, Misono M. Activity patterns of H3PMO12O40 and its alkali salts for oxidation reactions. Chemistry Letters, 1983, 12(8): 1177–1180

    Article  Google Scholar 

  9. Konishi Y, Sakata K, Misono M, Yoneda Y. Catalysis by heteropoly compounds oxidation of methacrolein to methacrylic-acid over 12- molybdophosphoric acid. Journal of Catalysis, 1982, 77(1): 169–179

    Article  CAS  Google Scholar 

  10. Deuser L M, Gaube J W, Martin F G, Hibst H. Effects of Cs and V on heteropolyacid catalysts in methacrolein oxidation. Studies in Surface Science and Catalysis, 1996, 101: 981–990

    Article  Google Scholar 

  11. Mizuno N, Watanabe T, Misono M. Catalysis by heteropoly compounds oxidation of methacrylaldehyde over 12-molybdophosphoric acid and its alkali salts. Bulletin of the Chemical Society of Japan, 1991, 64(1): 243–247

    Article  CAS  Google Scholar 

  12. Li Y, Wei Z, Gao F, Kovarik L, Baylon R A L, Peden C H F, Wang Y. Effect of oxygen defects on the catalytic performance of VOx/ CeO2 catalysts for oxidative dehydrogenation of methanol. ACS Catalysis, 2015, 5(5): 3006–3012

    Article  CAS  Google Scholar 

  13. Li Y, Wei Z, Gao F, Kovarik L, Peden C H F, Wang Y. Effects of CeO2 support facets on VOx/CeO2 catalysts in oxidative dehydrogenation of methanol. Journal of Catalysis, 2014, 315: 15–24

    Article  CAS  Google Scholar 

  14. Li Y, Wei Z, Gao F, Kovarik L, Peden C H F, Wang Y. Effect of sodium on the catalytic properties of VOx/CeO2 catalysts for oxidative dehydrogenation of methanol. Journal of Physical Chemistry C, 2013, 117(11): 5722–5729

    Article  CAS  Google Scholar 

  15. Langpape M, Millet J M M. Effect of iron counter-ions on the redox properties of the Keggin-type molybdophosphoric heteropolyacid Part I. An experimental study on isobutane oxidation catalysts. Applied Catalysis A, 2000, 200(1-2): 89–101

    Article  CAS  Google Scholar 

  16. Zhang H, Yan R Y, Yang Y, Diao Y Y, Wang L, Zhang S J. Investigation of Cu- and Fe-doped CsH3PMo11VO40 heteropoly compounds for the selective oxidation of methacrolein to methacrylic acid. Industrial & Engineering Chemistry Research, 2013, 52(12): 4484–4490

    Article  CAS  Google Scholar 

  17. Mizun N, Suh D J, Han W, Kudo T. Catalytic performance of Cs2.5Fe0.08H1.26PVMo11O40 for direct oxidation of lower alkanes. Journal of Molecular Catalysis A, 1996, 114(1-3): 309–317

    Article  Google Scholar 

  18. Yang J I, Lee D W, Lee J H, Hyun J C, Lee K Y. Selective and high catalytic activity of CsnH4–nPMo11VO40 (n>3) for oxidation of ethanol. Applied Catalysis A, 2000, 195: 123–127

    Article  Google Scholar 

  19. Kendell S M, Alston A S, Ballam N J, Brown T C, Burns R C. Structural and activity investigation into Al3+, La3+ and Ce3+ addition to the phosphomolybdate heteropolyanion for isobutane selective oxidation. Catalysis Letters, 2011, 141(3): 374–390

    Article  CAS  Google Scholar 

  20. Bayer R, Marchal C, Liu F X, Teze A, Herve G. Catalysis of the oxidation of isobutyric acid by vanadyl, copper and mixed vanadylcopper salts of H3[PMo12O40] and H4. Journal of Molecular Catalysis A, 1996, 114(1-3): 277–286

    Article  CAS  Google Scholar 

  21. Stytsenko V D, Lee WH, Lee JW. Catalyst design for methacrolein oxidation to methacrylic acid. Reaction Kinetics and Catalysis Letters, 2001, 42(2): 212–216

    Article  CAS  Google Scholar 

  22. Sun M, Zhang J Z, Cao C J, Zhang Q H, Wang Y, Wan H L. Significant effect of acidity on catalytic behaviors of Cs-substituted polyoxometalates for oxidative dehydrogenation of propane. Applied Catalysis A, 2008, 349(1-2): 212–221

    Article  CAS  Google Scholar 

  23. Villabrille P, Romanelli G, Vazquez P, Cáceres C. Vanadiumsubstituted Keggin heteropolycompounds as catalysts for ecofriendly liquid phase oxidation of 2, 6-dimethylphenol to 2, 6- dimethyl-1, 4-benzoquinone. Applied Catalysis A, 2004, 270(1-2): 101–111

    Article  CAS  Google Scholar 

  24. Li X K, Lei Y, Jiang Q, Zhao J, Ji W J, Zhang Z B, Chen Y. Partial oxidation of propane over Keggin type molybdovanadophosphoric acids. Acta Chimica Sinica, 2005, 63: 1049–1054

    CAS  Google Scholar 

  25. Ilkenhans T, Herzog B, Braun T, Schlogl R. The nature of the active phase in the heteropolyacid catalyst H4PVMo11O432H2O used for the selective oxidation of isobutyric acid. Journal of Catalysis, 1995, 153(2): 275–292

    Article  CAS  Google Scholar 

  26. Marosi L, Platero E E, Cifre J, Arean C O. Thermal dehydration of H3+x PVxM12-x O4O·H2O Keggin type heteropolyacids; formation, thermal stability and structure of the anhydrous acids H3PM12O4O of the corresponding anhydrides PM12O38.5 and of a novel trihydrate H3PW12O4O·3H2O. Journal of Materials Chemistry, 2000, 10(8): 1949–1955

    Article  CAS  Google Scholar 

  27. Deng Q, Jiang S L, Cai T J, Peng Z S, Fang Z J. Selective oxidation of isobutane over HxFe0.12Mo11VPAs0.3Oy heteropoly compound catalyst. Journal of Molecular Catalysis A, 2005, 229(1-2): 165–170

    Article  CAS  Google Scholar 

  28. Li X K, Zhao J, Ji W J, Zhang Z B, Chen Y, Au C T, Scott H, Hartmut H. Effect of vanadium substitution in the cesium salts of Keggin-type heteropolyacids on propane partial oxidation. Journal of Catalysis, 2006, 237(1): 58–66

    Article  CAS  Google Scholar 

  29. Damyanova S, Spojakina A, Jiratova K. Effect of mixed titaniaalumina supports on the phase composition of NiMo/TiO2 single bond Al2O3 catalysts. Applied Catalysis A, 1995, 125(2): 257–269

    Article  CAS  Google Scholar 

  30. Damyanova S, Cubeiro M L, Fierro J L G. Acid-redox properties of titania-supported 12-molybdophosphates for methanol oxidation. Journal of Molecular Catalysis A, 1999, 142(1): 85–100

    Article  CAS  Google Scholar 

  31. Misono M, Nojiri N. Recent Progress in Catalytic Technology in Japan. Applied Catalysis A, 1990, 64: 1–30

    Article  CAS  Google Scholar 

  32. Huynh Q, Millet J M M. Characterization of iron counter-ion environment in bulk and supported phosphomolybdic acid based catalysts. Journal of Physics and Chemistry of Solids, 2005, 66(5): 887–894

    Article  CAS  Google Scholar 

  33. Mizuno N, Tateishi M, Iwamoto M. Direct oxidation of isobutane into methacrylic acid and methacrolein over Cs2.5Ni0.08-substitute H3PMoI2O40. Chemical Communications, 1994, 12: 1411–1412

    Article  Google Scholar 

  34. Mizuno N, Yahiro H. Oxidation of isobutane catalyzed by partially salified cesium molybdovanadophosphoric acids. Journal of Physical Chemistry B, 1998, 102(2): 437–443

    Article  CAS  Google Scholar 

  35. Putluru S S R, Mossin S, Riisager A, Fehrmann R. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia. Catalysis Today, 2011, 176(1): 292–297

    Article  CAS  Google Scholar 

  36. Kanno M, Yasukawa T, Ninomiya W, Ooyachi K, Kamiya Y. Catalytic oxidation of methacrolein to methacrylic acid over silicasupported 11-molybdo-1-vanadophosphoric acid with different heteropolyacid loadings. Journal of Catalysis, 2010, 273(1): 1–8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Zhang, H., Wang, L. et al. Transition metal-doped heteropoly catalysts for the selective oxidation of methacrolein to methacrylic acid. Front. Chem. Sci. Eng. 10, 139–146 (2016). https://doi.org/10.1007/s11705-015-1548-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-015-1548-9

Keywords

Navigation