Skip to main content
Log in

Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A series of unsupported MoS2 catalysts with or without Al2O3 modification was prepared using a modified thermal decomposition approach. The catalysts were tested for the methanation of carbon monoxide and the optimum one has 25.6 wt-% Al2O3 content. The catalysts were characterized by nitrogen adsorption measurement, X-ray diffraction and transmission electron microscopy. The results show that adding appropriate amount of Al2O3 increases the dispersion of MoS2, and the increased interaction force between MoS2 and Al2O3 can inhibit the sintering of active MoS2 to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang H, Dong Y Y, Fang W P, Lian Y X. Effects of composite oxide supports on catalytic performance of Ni-based catalysts for CO methanation. Chinese Journal of Catalysis, 2013, 34(2): 330–335

    Article  Google Scholar 

  2. Kopyscinski J, Schildhauer T J, Biollaz SM. Production of synthetic natural gas (SNG) from coal and dry biomass-A technology review from 1950 to 2009. Fuel, 2010, 89(8): 1763–1783

    Article  CAS  Google Scholar 

  3. Turner J A. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974

    Article  CAS  Google Scholar 

  4. Galletti C, Specchia S, Specchia V. CO selective methanation in H2-rich gas for fuel cell application: Microchannel reactor performance with Ru-based catalysts. Chemical Engineering Journal, 2011, 167(2–3): 616–621

    Article  CAS  Google Scholar 

  5. Bajusz J G, Kwik D J, Goodwin J G Jr. Methanation on K+-modified Pt/SiO2: The impact of reaction conditions on the effective role of the promoter. Catalysis Letters, 1997, 48(3–4): 151–157

    Article  CAS  Google Scholar 

  6. Liu B, Ji S F. Comparative study of fluidized-bed and fixed-bed reactor for syngas methanation over Ni-W/TiO2-SiO2 catalyst. Journal of Energy Chemistry, 2013, 22(5): 740–746

    Article  Google Scholar 

  7. Gulková D, Kaluěa L, Vít Z, Zdražil M. Preparation of MoO3/MgO catalysts with eggshell and uniform Mo distribution by methanol assisted spreading: Effect of MoO3 dispersion on rate of spreading. Catalysis Communications, 2006, 7(5): 276–280

    Article  Google Scholar 

  8. Vít Z, Gulkově D, Kaluěa L, Zdražil M. Synergetic effects of Pt and Ru added to Mo/Al2O3 sulfide catalyst in simultaneous hydrodesulfurization of thiophene and hydrogenation of cyclohexene. Journal of Catalysis, 2005, 232(2): 447–455

    Article  Google Scholar 

  9. Happel J, Yoshikiyo M, Yin F, Otarod M, Cheh H Y, Hnatow M A, Bajars L, Meyer H S. Isotopic assessment of methanation over molybdenum sulfide catalysts, industry engineering chemistry. Product Research and Development, 1986, 25(2): 214–219

    Article  CAS  Google Scholar 

  10. Koizumi N, Bian G Z, Murai K, Ozaki T, Yamada M. In situ DRIFT studies of sulfided K-Mo/γ-Al2O3 catalysts. Journal of Molecular Catalysis A Chemical, 2004, 207(2): 173–182

    Article  CAS  Google Scholar 

  11. Raybaud P, Hafner J, Kresse G, Kasztelan S, Toulhoat H. Structure, energetics, and electronic properties of the surface of a promoted MoS2 catalyst: An ab initio local density functional study. Journal of Catalysis, 2000, 189(1): 129–146

    Article  CAS  Google Scholar 

  12. Meyer H S, Hill V L, Flowers A, Happel J, Hnatow M A. Direct methanation—A new method of converting synthesis gas to substitute natural gas. Preprint Papers-American Chemical Society. Division of Fuel Chemistry, 1982, 27(1): 109–115

    CAS  Google Scholar 

  13. Korányi T I, Manninger I, Paál Z, Marks O, Günter T R. Activation of unsupported Co-Mo catalysts in thiophene hydrodesulfurization. Journal of Catalysis, 1989, 116(2): 422–439

    Article  Google Scholar 

  14. Nogueiraa A, Znaiguiaa R, Uziob D, Afanasieva P, Berhaulta G. Curved nanostructures of unsupported and Al2O3-supported MoS2 catalysts: Synthesis and HDS catalytic properties. Applied Catalysis A, General, 2012, 429–430: 92–105

    Article  Google Scholar 

  15. Du K, Fu W Y, Wei R H, Yang H B, Liu S K, Yu S D, Zhou G T. Synthesis of inorganic fullerene-like MoS2 nanoparticles by a facile method. Materials Letters, 2007, 61(27): 4887–4889

    Article  CAS  Google Scholar 

  16. Peng Y Y, Meng Z Y, Zhong C, Lu J, Yu WC, Yang Z P, Qian Y T. Hydrothermal synthesis of MoS2 and its pressure-related crystallization. Journal of Solid State Chemistry, 2011, 159(1): 170–173

    Article  Google Scholar 

  17. Devers E, Afanasiev P, Jouguet B, Vrinat M. Hydrothermal syntheses and catalytic properties of dispersed molybdenum sulfides. Catalysis Letters, 2002, 82(1–2): 13–17

    Article  CAS  Google Scholar 

  18. Yu D B, Feng Y, Zhu Y F, Zhang X B, Liu H Q. Template synthesis and characterization of molybdenum disulfide nanotubes. Materials Research Bulletin, 2011, 46(9): 1504–1509

    Article  CAS  Google Scholar 

  19. Koh J H, Cho A, Lee S, Moon S H. Properties of unsupported MoS2 species produced in the preparation of MoS2/Al2O3 using a sonochemical method. Korean Journal of Chemical Engineering, 2009, 26(4): 999–1003

    Article  CAS  Google Scholar 

  20. Fuentes S, Diaz G, Pedraza F, Rojas H, Rosas N. The influence of a new preparation method on the catalytic properties of CoMo and NiMo sulfides. Journal of Catalysis, 1988, 113(2): 535–539

    Article  CAS  Google Scholar 

  21. Inamura K, Prins R. The role of Co in unsupported Co-Mo sulfides in the hydrodesulfurization of thiophene. Journal of Catalysis, 1994, 147(2): 515–524

    Article  CAS  Google Scholar 

  22. Bezverkhyy I, Afanasiev P, Geantet C, Lacroix M. Highly active (Co)MoS2/Al2O3 hydrodesulfurization catalysts prepared in aqueous solution. Journal of Catalysis, 2001, 204(2): 495–497

    Article  CAS  Google Scholar 

  23. Berhault G, Mehta A, Pavel A C, Yang J Z, Rendon L, Yácaman M J, Araiza L C, Moller A D, Chianelli R R. The role of structural carbon in transition metal sulfides hydrotreating catalysts. Journal of Catalysis, 2001, 198(1): 9–19

    Article  CAS  Google Scholar 

  24. Tran M N, Pramana P D, Lee S S. In situ photo-assisted deposition of MoS2 electro-catalyst onto zinc cadmium sulphide nanoparticle surfaces to construct an efficient photocatalyst for hydrogen generation. Nanoscale, 2013, 5(4): 1479–1482

    Article  Google Scholar 

  25. Altavilla C, Sarno M, Ciambelli P, Senatore A, Petrone V. New’ chimie douce’ approach to the synthesis of hybrid nanosheets of MoS2 on CNT and their anti-friction and anti-wear properties. Nanotechnology, 2013, 24(12): 125601–125612

    Article  Google Scholar 

  26. Muller A, Diemann E, Branding A, Baumann F W, Breysse M, Vrinat M. New method for the preparation of hydrodesulphurization catalysts: Use of the molybdenum sulphur cluster compound (NH4)2Mo3S(S2)6. Applied Catalysis, 1990, 62(1): 13–17

    Article  Google Scholar 

  27. Liu J, Wang E D, Lv J, Li Z H, Wang BW, Ma X B, Qin S D, Sun Q. Investigation of sulfur-resistant, highly active unsupported MoS2 catalysts for synthetic natural gas production from CO methanation. Fuel Processing Technology, 2013, 110: 249–257

    Article  CAS  Google Scholar 

  28. Calais C, Matsubayashi N, Geantet C, Yoshimura Y, Shimada H, Nishijima A, Lacroix M, Breysse M. Crystallite size determination of highly dispersed unsupported MoS2 catalysts. Journal of Catalysis, 1998, 174(2): 130–141

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbin Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., He, J., Wang, H. et al. Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3 . Front. Chem. Sci. Eng. 9, 33–39 (2015). https://doi.org/10.1007/s11705-014-1446-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1446-6

Keywords

Navigation