Skip to main content
Log in

A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The control system of a catalytic flow reversal reactor (CFRR) for the mitigation of ventilation air methane was investigated. A one-dimensional heterogeneous model with a logic-based controller was applied to simulate the CFRR. The simulation results indicated that the controller developed in this work performs well under normal conditions. Air dilution and auxiliary methane injection are effective to avoid the catalyst overheating and reaction extinction caused by prolonged rich and lean feed conditions, respectively. In contrast, the reactor is prone to lose control by adjusting the switching time solely. Air dilution exhibits the effects of two contradictory aspects on the operation of CFRR, i.e., cooling the bed and accumulating heat, though the former is in general more prominent. Lowering the reference temperature for flow reversal can decrease the bed temperature and benefit stable operation under rich methane feed condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karakurt I, Aydin G, Aydiner K. Sources and mitigation of methane emissions by sectors: A critical review. Renewable Energy, 2012, 39(1): 40–48

    Article  CAS  Google Scholar 

  2. Su S, Beath A, Guo H, Mallett C. An assessment of mine methane mitigation and utilisation technologies. Progress in Energy and Combustion Science, 2005, 31(2): 123–170

    Article  CAS  Google Scholar 

  3. Gosiewski K, Matros Y S, Warmuzinski K, Jaschik M, Tanczyk M. Homogeneous vs catalytic combustion of lean methane-air mixtures in reverse-flow reactors. Chemical Engineering Science, 2008, 63(20): 5010–5019

    Article  CAS  Google Scholar 

  4. Karakurt I, Aydin G, Aydiner K. Mine ventilation air methane as a sustainable energy source. Renewable & Sustainable Energy Reviews, 2011, 15(2): 1042–1049

    Article  CAS  Google Scholar 

  5. Warmuzinski K. Harnessing methane emissions from coal mining. Process Safety and Environmental Protection, 2008, 86(5): 315–320

    Article  CAS  Google Scholar 

  6. Trimm D. Catalytic combustion. Applied Catalysis A, General, 1983, 7(3): 249–282

    Article  CAS  Google Scholar 

  7. Pio Forzatti G G. Catalytic combustion for the production of energy. Catalysis Today, 1999, 54(1): 165–180

    Article  Google Scholar 

  8. Zhang Y, Qin Z, Wang G, Zhu H, Dong M, Li S, Wu Z, Li Z, Wu Z, Zhang J, Hu T, Fan W, Wang J. Catalytic performance of MnOx-NiO composite oxide in lean methane combustion at low temperature. Applied Catalysis B: Environmental, 2013, 129(1): 172–181

    Article  CAS  Google Scholar 

  9. Wang B, Qin Z, Wang G, Wu Z, Fan W, Zhu H, Li S, Zhang Y, Li Z, Wang J. Catalytic combustion of lean methane at low temperature over palladium on a CoOx-SiO2 composite support. Catalysis Letters, 2013, 143(5): 411–417

    Article  CAS  Google Scholar 

  10. Budhi Y W, Jaree A, Hoebink J H B J, Schouten J C. Simulation of reverse flow operation for manipulation of catalyst surface coverage in the selective oxidation of ammonia. Chemical Engineering Science, 2004, 59(19): 4125–4135

    Article  CAS  Google Scholar 

  11. Grigorios Kolios G E. Styrene synthesis in a reverse-flow reactor. Chemical Engineering Science, 1999, 54(13–14): 2637–2646

    Article  Google Scholar 

  12. Dillerop C, van den Berg H, van der Ham A G J. Novel syngas production techniques for GTL-FT synthesis of gasoline using reverse flow catalytic membrane reactors. Industrial & Engineering Chemistry Research, 2010, 49(24): 12529–12537

    Article  CAS  Google Scholar 

  13. Glöckler B, Kolios G, Eigenberger G. Analysis of a novel reverse-flow reactor concept for autothermal methane steam reforming. Chemical Engineering Science, 2003, 58(3–6): 593–601

    Article  Google Scholar 

  14. Matros Y S, Bunimovich G A. Reverse-flow operation in fixed bed catalytic reactors. Catalysis Reviews, 1996, 38(1): 1–68

    Article  CAS  Google Scholar 

  15. Kolios G, Frauhammer J, Eigenberger G. Autothermal fixed-bed reactor concepts. Chemical Engineering Science, 2000, 55(24): 5945–5967

    Article  CAS  Google Scholar 

  16. Balaji S, Fuxman A, Lakshminarayanan S, Forbes J F, Hayes R E. Repetitive model predictive control of a reverse flow reactor. Chemical Engineering Science, 2007, 62(8): 2154–2167

    Article  CAS  Google Scholar 

  17. Devals C, Fuxman A, Bertrand F, Forbes J F, Perrier M, Hayes R E. Enhanced model predictive control of a catalytic flow reversal reactor. Canadian Journal of Chemical Engineering, 2009, 87(4): 620–631

    Article  CAS  Google Scholar 

  18. Dufour P, Couenne F, Toure Y. Model predictive control of a catalytic reverse flow reactor. Control Systems Technology. IEEE Transactions on, 2003, 11(5): 705–714

    Article  Google Scholar 

  19. Dufour P, Touré Y. Multivariable model predictive control of a catalytic reverse flow reactor. Computers & Chemical Engineering, 2004, 28(11): 2259–2270

    Article  CAS  Google Scholar 

  20. Fuxman A M, Forbes J F, Hayes R E. Characteristics-based model predictive control of a catalytic flow reversal reactor. Canadian Journal of Chemical Engineering, 2007, 85(4): 424–432

    Article  CAS  Google Scholar 

  21. Edouard D, Hammouri H, Zhou X G. Control of a reverse flow reactor for VOC combustion. Chemical Engineering Science, 2005, 60(6): 1661–1672

    Article  CAS  Google Scholar 

  22. Fuxman A M, Aksikas I, Forbes J F, Hayes R E. LQ-feedback control of a reverse flow reactor. Journal of Process Control, 2008, 18(7–8): 654–662

    Article  CAS  Google Scholar 

  23. Edouard D, Dufour P, Hammouri H. Observer based multivariable control of a catalytic reverse flow reactor: comparison between LQR and MPC approaches. Computers & Chemical Engineering, 2005, 29(4): 851–865

    Article  CAS  Google Scholar 

  24. Fissore D, Barresi A A. Robust control of a reverse-flow reactor. Chemical Engineering Science, 2008, 63(7): 1901–1913

    Article  CAS  Google Scholar 

  25. Barresi A A, Vanni M. Control of catalytic combustors with periodical flow reversal. AIChE Journal. American Institute of Chemical Engineers, 2002, 48(3): 648–652

    Article  CAS  Google Scholar 

  26. Hevia M A G, Ordóñez S, Díez F V, Fissore D, Barresi A A. Design and testing of a control system for reverse-flow catalytic afterburners. AIChE Journal. American Institute of Chemical Engineers, 2005, 51(11): 3020–3027

    Article  CAS  Google Scholar 

  27. Balaji S, Lakshminarayanan S. Heat removal from reverse flow reactors used in methane combustion. Canadian Journal of Chemical Engineering, 2005, 83(4): 695–704

    CAS  Google Scholar 

  28. Mancusi E, Russo L, Brasiello A, Crescitelli S, di Bernardo M. Hybrid modeling and dynamics of a controlled reverse flow reactor. AIChE Journal. American Institute of Chemical Engineers, 2007, 53(8): 2084–2096

    Article  CAS  Google Scholar 

  29. Marín P, Ho W, Ordóñez S, Díez F V. Demonstration of a control system for combustion of lean hydrocarbon emissions in a reverse flow reactor. Chemical Engineering Science, 2010, 65(1): 54–59

    Article  Google Scholar 

  30. Salomons S, Hayes R E, Poirier M, Sapoundjiev H. Modelling a reverse flow reactor for the catalytic combustion of fugitive methane emissions. Computers & Chemical Engineering, 2004, 28(9): 1599–1610

    Article  CAS  Google Scholar 

  31. Aubé F, Sapoundjiev H. Mathematical model and numerical simulations of catalytic flow reversal reactors for industrial applications. Computers & Chemical Engineering, 2000, 24(12): 2623–2632

    Article  Google Scholar 

  32. Li Z, Qin Z, Zhang Y, Wu Z, Wang H, Li S, Shi R, Dong M, Fan W, Wang J. A control strategy of flow reversal with hot gas withdrawal for heat recovery and its application in mitigation and utilization of ventilation air methane in a reverse flow reactor. Chemical Engineering Journal, 2013, 228: 243–255

    Article  CAS  Google Scholar 

  33. Vortmeyer D, Jahnel W. Moving reaction zones in fixed bed reactors under the influence of various parameters. Chemical Engineering Science, 1972, 27(8): 1485–1496

    Article  CAS  Google Scholar 

  34. Froment G F, Bischoff K B. Chemical Reactor Analysis and Design. New York: John Wiley & Sons, 1979, 476

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhangfeng Qin or Jianguo Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Qin, Z., Zhang, Y. et al. A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor. Front. Chem. Sci. Eng. 7, 347–356 (2013). https://doi.org/10.1007/s11705-013-1347-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-013-1347-0

Keywords

Navigation