Skip to main content
Log in

Biosorption of mercury and lead by aqueous Streptomyces VITSVK9 sp. isolated from marine sediments from the bay of Bengal, India

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Toxic heavy metals are increasingly accumulating in the environment worldwide and are considered to be life threatening contaminants. The biosorption of mercury and lead by marine actinomycetes isolated from marine sediment collected from the Bay of Bengal coast of Puducherry, India, was evaluated. The maximum tolerance concentration (MTC) of Streptomyces sp. was determined by a well diffusion method and a broth dilution method. The effects of the initial metal ion concentration, the pH and the biomass dosage on the biosorption of mercury and lead ions were investigated. The MTC of the isolate to metals was 200 mg·L−1 for mercury and 1800 mg·L−1 for lead. At neutral pH, the isolate had a maximum biosorption of metal ions of 200 mg·L−1 and 150 mg·L−1 for mercury and lead respectively. Fourier transform infrared (FTIR) absorption spectra showed the chemical interactions between the functional groups in the biomass such as hydroxyl (−OH), amine (−NH2), carboxyl (−COOH) and the metal ions. The isolate was further characterized by molecular taxonomy and identified as a member of the genus Streptomyces. Based on the phenotypic and phylogenetic analysis, the strain was classified as a new species of the genus Streptomyces and designated as Streptomyces VITSVK9 sp. (HM137310). A blast search of the 16S rDNA sequence of the strain showed the most similarity (95%) with Streptomyces sp. A515 Ydz-FQ (EU384279). Based on the results, it can be concluded that this marine Streptomyces could be used as a biosorbent for the removal of heavy metal ions from aqueous environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahluwalia S S, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 2007, 98(12): 2243–2257

    Article  CAS  Google Scholar 

  2. Volesky B, Schiewer S. Biosorption, Metals. Encyclopedia of Bioprocess Technology (Fermentation, Biocatalysis and Bioseparation), 2000, 1: 433–453

    Google Scholar 

  3. Brierley C L. Bioremediation of metal contaminated surface and ground waters. Geomicrobiology Journal, 1991, 8(3–4): 201–224

    Google Scholar 

  4. Volesky B, Holan Z R. Biosorption of heavy metals. Biotechnology Progress, 1995, 11(3): 235–250

    Article  CAS  Google Scholar 

  5. Tobin J M, Cooper D G, Neufeld R J. Uptake of metal ions by Rhizopus arrhizus biomass. Applied and Environmental Microbiology, 1984, 47(4): 821–824

    CAS  Google Scholar 

  6. Williams C J, Edyvean R G J. Ion exchange in nickel biosorption by seaweed materials. Biotechnology Progress, 1997, 13(4): 424–432

    Article  CAS  Google Scholar 

  7. Saurav K, Kannabiran K. Biosorption of Cd (II) and Pb (II) by ions by aqueous solution of novel alkalophilic Streptomyces VITSVK5 spp. Journal of Ocean University of China, 2011, 10(1): 61–66

    Article  CAS  Google Scholar 

  8. Selatnia A, Bakhti M Z, Madani A, Kertous L, Mansouri Y. Biosorption of Cd2+ from aqueous solution by a NaOH treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy, 2004, 75(1–4): 11–24

    Article  CAS  Google Scholar 

  9. Roux J C, Lhomme B, Nexton J, Lenon G, Robillon C. Biosorption of heavy metal from polluted waters by mycelia dead biomasses of filamentous fungus Rhizopus arrhizus. Proceedings of Europian Congress on Biotechnology, 1990, 325–328

  10. Fourest E, Serre A, Roux J C. Contribution of carboxyl groups to heavy metal binding sites in fungal wall. Toxicological and Environmental Chemistry, 1996, 54(1–4): 1–10

    Article  CAS  Google Scholar 

  11. Kurland L T, Faro S N, Siedler H. Minamata disease. The outbreak of a neurologic disorder in Minamata, Japan, and its relationship to the ingestion of seafood contaminated by mercuric compounds. World Neurology, 1960, 1: 370–395

    CAS  Google Scholar 

  12. Saurav K, Kannabiran K. Biosorption of Cr (III) and Cr (VI) by Streptomyces VITSVK9. Annals of Microbiology, 2011, 61(4): 833–841

    Article  CAS  Google Scholar 

  13. Acharya J, Sahu J N, Mohanty C R, Meikap B C. Removal of lead (II) from wastewater by activated carbon developed from tamarind wood by zinc chloride activation. Chemical Engineering Journal, 2009, 149(1–3): s249–s262

    Article  Google Scholar 

  14. Volesky B. Biosorption and Biosorbents. In: Biosorption of Heavy metals. Florida: CRC Press, 1990, 3–6

    Google Scholar 

  15. Ahluwalia S S, Goyal D. Removal of lead from aqueous solution by different fungi. Indian Journal of Microbiology, 2003, 43: 237–241

    Google Scholar 

  16. Gupta R, Ahuja P, Khan S, Saxena R K, Mohapatra M. Microbial biosorbents: meetings challenges of heavy metals pollution in aqueous solution. Current Science, 2000, 78: 967–973

    CAS  Google Scholar 

  17. Strandberg G W, Shumate S E, Parrott J R. Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Applied and Environmental Microbiology, 1981, 41(1): 237–245

    CAS  Google Scholar 

  18. Kuyucak N, Volesky B. Accumulation of cobalt by marine alga. Biotechnology and Bioengineering, 1989, 33(7): 809–814

    Article  CAS  Google Scholar 

  19. Ahluwalia S S, Goyal D. Removal of heavy metals by waste tealeaves from aqueous solution. Engineering in Life Sciences, 2005, 5(2): 158–162

    Article  CAS  Google Scholar 

  20. Smith L A, Alleman B C, Copley-Graves L. Biological Treatment Options. In: Means J L, Hinchee R E, eds. Emerging Technology for Bioremediation of Metals. Florida: CRC Press, 1994, 1–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan Kannabiran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanjenbam, P., Saurav, K. & Kannabiran, K. Biosorption of mercury and lead by aqueous Streptomyces VITSVK9 sp. isolated from marine sediments from the bay of Bengal, India. Front. Chem. Sci. Eng. 6, 198–202 (2012). https://doi.org/10.1007/s11705-012-1285-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-012-1285-2

Keywords

Navigation