Skip to main content
Log in

Heat, mass, and work exchange networks

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Heat (energy), water (mass), and work (pressure) are the most fundamental utilities for operation units in chemical plants. To reduce energy consumption and diminish environment hazards, various integration methods have been developed. The application of heat exchange networks (HENs), mass exchange networks (MENs), water allocation heat exchange networks (WAHENs) and work exchange networks (WENs) have resulted in the significant saving of energy and water. This review presents the main works related to each network. The similarities and differences of these networks are also discussed. Through comparing and discussing these different networks, this review inspires researchers to propose more efficient and convenient methods for the design of existing exchange networks and even new types of networks including multi-objective networks for the system integration in order to enhance the optimization and controllability of processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao P J. Chemical Process Engineering. Dalian: Dalian University of Technology Press, 1992 (in Chinese)

    Google Scholar 

  2. Linnhoff B, Flower J R. Synthesis of heat exchange networks. II. Evolutionary generation of networks with various criteria of optimality. AIChE Journal. American Institute of Chemical Engineers, 1978, 24(4): 642–654

    Article  CAS  Google Scholar 

  3. Townsend D W, Linnhoff B. Heat and power networks in process design. Part II: design procedure for equipment selection and process matching. AIChE Journal. American Institute of Chemical Engineers, 1983, 29(5): 748–771

    Article  CAS  Google Scholar 

  4. Linnhoff B, Flower J R. Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks. AIChE Journal. American Institute of Chemical Engineers, 1978, 24(4): 633–642

    Article  CAS  Google Scholar 

  5. Bagajewicz M J, Barbaro A F. On the use of heat pumps in total site heat integration. Computers & Chemical Engineering, 2003, 27(11): 1707–1719

    Article  CAS  Google Scholar 

  6. Papoulias S A, Grossmann I E. A structural optimization approach in process synthesis. II. Heat recovery networks. Computers & Chemical Engineering, 1983, 7(6): 707–721

    Article  CAS  Google Scholar 

  7. Yee T F, Grossmann I E. Simultaneous optimization models for heat integration. II. Heat exchanger network synthesis. Computers & Chemical Engineering, 1990, 14(10): 1165–1184

    Article  CAS  Google Scholar 

  8. Yee T F, Grossmann I E, Kravanja Z. Simultaneous optimization models for heat integration. I. Area and energy targeting and modeling of multi-stream exchangers. Computers & Chemical Engineering, 1990, 14(10): 1151–1164

    Article  CAS  Google Scholar 

  9. Furman K C, Sahinidis N V. A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century. Industrial & Engineering Chemistry Research, 2002, 41(10): 2335–2370

    Article  CAS  Google Scholar 

  10. Morar M, Agachi P S. Review: important contributions in development and improvement of the heat integration techniques. Computers & Chemical Engineering, 2010, 34(8): 1171–1179

    Article  CAS  Google Scholar 

  11. Kotjabasakis E, Linnhoff B. Sensitivity tables for the design of flexible processes. 1. How much contingency in heat exchanger network is cost-effective. Chemical Engineering Research & Design, 1986, 64: 197–211

    CAS  Google Scholar 

  12. Chen C L, Hung P S. Synthesis of flexible heat exchange networks and mass exchange networks. Computers & Chemical Engineering, 2007, 31(12): 1619–1632

    Article  CAS  Google Scholar 

  13. Baldea M, Daoutidis P. Modeling, dynamics and control of process networks with high energy throughput. Computers & Chemical Engineering, 2008, 32(9): 1964–1983

    Article  CAS  Google Scholar 

  14. Feng X, Du J, Liu L L, Luan G Y, Yao P J. Simultaneous optimization of synthesis and scheduling of cleaning in flexible heat exchanger networks. Chinese Journal of Chemical Engineering, 2010, 18(3): 402–411

    Google Scholar 

  15. Dhole V R, Linnhoff B. Total site targets for fuel, co-generation, emissions, and cooling. Computers & Chemical Engineering, 1992, 17: S101

    Google Scholar 

  16. Rodera H, Bagajewicz M J. Targeting procedures for energy savings by heat integration across plants. AIChE Journal. American Institute of Chemical Engineers, 1999, 45(8): 1721–1549

    Article  CAS  Google Scholar 

  17. Hui CW, Ahmad S. Minimum cost heat recovery between separate plant regions. Computers & Chemical Engineering, 1994, 18(8): 711–728

    Article  CAS  Google Scholar 

  18. Makwana Y, Smith R, Zhu X X. A novel approach for retrofit and operations management of existing total sites. Computers & Chemical Engineering, 1998, 22: S793–Sl96

    Article  CAS  Google Scholar 

  19. Wolff A, Groebel M J, Janowsky R. Site modeling TM: a powerful tool for total site energy optimization. Computers & Chemical Engineering, 1998, 22: S1073–S1084

    Article  CAS  Google Scholar 

  20. Shenoy U V, Sinha A, Bandyopadhyay S. Multiple utilities targeting for heat exchanger networks. Trans IChemE, 1998, 76, Part A

  21. Marechal F, Kalitventzeff B. Targeting the integration of multiperiod utility systems for site scale process integration. Applied Thermal Engineering, 2003, 23(14): 1763–1784

    Article  CAS  Google Scholar 

  22. Matsuda K, Hirochi Y, Tatsumi H, Shire T. Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants. Energy, 2009, 34(10): 687–692

    Article  CAS  Google Scholar 

  23. Goršek A, Glavič P, Bogataj M. Design of the optimal total site heat recovery system using SSSP approach. Chemical Engineering Progress, 2006, 45(5): 372–382

    Article  CAS  Google Scholar 

  24. Bandyopadhyay S, Varghese J, Bansal V. Targeting for cogeneration potential through total site integration. Applied Thermal Engineering, 2010, 30(1): 6–14

    Article  Google Scholar 

  25. Liewa P Y, Rafidah S, Alwia W, Varbanovb P S, Manana Z A, Klemeš J J. A numerical technique for total site sensitivity analysis. Applied Thermal Engineering, 2012, 40: 397–408

    Article  Google Scholar 

  26. Matsuda K, Tanaka S, Endou M, Iiyoshi T. Energy saving study on a large steel plant by total site based pinch technology. Applied Thermal Engineering, 2012, 43: 14–19

    Article  Google Scholar 

  27. Varbanov P S, Fodor Z, Klemes J J. Total site targeting with process specific minimum temperature difference (ΔTmin). Energy, 2012, 44(1): 20–28

    Article  Google Scholar 

  28. Varghese J, Bandyopadhyay S. Fired heater integration into total site and multiple fired heater targeting. Applied Thermal Engineering, 2012, 42: 111–118

    Article  Google Scholar 

  29. Rodera H, Bagajewicz M J. Multipurpose heat-exchanger networks for heat integration across plants. Industrial & Engineering Chemistry Research, 2001, 40(23): 55–85

    Article  CAS  Google Scholar 

  30. Goldblatt M E, Eble K S, Feather J E. Zero discharge: what, why, and how. Chemical Engineering Progress, 1993, 89(4): 22–27

    CAS  Google Scholar 

  31. Rosain R M. Reusing water in CPI plants. Chemical Engineering Progress, 1993, 89(4): 28–35

    CAS  Google Scholar 

  32. Zbontar L, Glavic P. Total site: wastewater minimization wastewater reuse and regeneration reuse. Resour Consrev Recy, 2000, 30(4): 261–275

    Article  Google Scholar 

  33. El-Halwagi MM, Manousiouthakis V. Synthesis of mass exchange networks. AIChE Journal. American Institute of Chemical Engineers, 1989, 35(8): 1233–1244

    Article  CAS  Google Scholar 

  34. Wang Y P, Smith R. Wastewater minimization. Chemical Engineering Science, 1994, 49(7): 981–1006

    Article  CAS  Google Scholar 

  35. Feng X, Bai J, Zheng X S. On the use of graphical method to determine the targets of single-contaminant regeneration recyclingwater systems. Chemical Engineering Science, 2007, 62(8): 2127–2138

    Article  CAS  Google Scholar 

  36. Vikas R D, Nand R, Richard A T, Marek W. Make your process water pay for itself. Chem Eng, 1996, January: 100–103

  37. Foo D C Y. State-of-the-art review of pinch analysis techniques for water network synthesis. Industrial & Engineering Chemistry Research, 2009, 48(11): 5125–5159

    Article  CAS  Google Scholar 

  38. Doyle S J, Smith R. Targeting water reuse with multiple contaminants. Trans IChemE, 1997, 75,Part B: 181–189

    CAS  Google Scholar 

  39. Sorin M, Bedard S. The global pinch point in water reuse networks. Trans IChemE, 1999, 77,Part B: 305–308

    CAS  Google Scholar 

  40. Castro P, Matos H, Fernandes M C, Nunes P C. Improvements for mass-exchange networks design. Chemical Engineering Science, 1999, 54(11): 1649–1665

    Article  CAS  Google Scholar 

  41. Hallale N. A new graphical targeting method for water minimization. Advances in Environmental Research, 2002, 6(3): 377–390

    Article  CAS  Google Scholar 

  42. Manan Z A, Tan Y L, Foo D C Y. Targeting the minimum water flow rate using water cascade analysis technique. AIChE Journal. American Institute of Chemical Engineers, 2004, 50(12): 3169–3183

    Article  CAS  Google Scholar 

  43. Bandyopadhyay S. Source composite curve for waste reduction. Chemical Engineering Journal, 2006, 125(2): 99–110

    Article  CAS  Google Scholar 

  44. Hallale N, Fraser D M. Capital cost targets for mass exchange networks a special case: water minimization. Chemical Engineering Science, 1998, 53(2): 293–313

    Article  CAS  Google Scholar 

  45. Quesada I, Grossmann I E. Global optimization algorithm of process networks with multi-component flows. Computers & Chemical Engineering, 1995, 19(12): 1219–1242

    Article  CAS  Google Scholar 

  46. Galan B, Grossmann I E. Optimal design of distributed wastewater treatment networks. Industrial & Engineering Chemistry Research, 1998, 37(10): 4036–4048

    Article  CAS  Google Scholar 

  47. Galan B, Grossmann I E. Optimal design of distributed wastewater treatment networks. Industrial & Engineering Chemistry Research, 1998, 37(10): 4036–4048

    Article  CAS  Google Scholar 

  48. Saif Y, Elkamel A, Pritzker M. Yousef, TriPathi P, Elkamel A, Pritzker M. Global optimization of reverse osmosis network for wastewater treatment and minimization. Industrial & Engineering Chemistry Research, 2008, 47(9): 3060–3070

    Article  CAS  Google Scholar 

  49. Li Y, Du J, Yao P J. Design of water network with multiple contaminants and zero discharge. Chinese Journal of Chemical Engineering, 2003, 11(5): 559–564

    CAS  Google Scholar 

  50. Gunaratnam M, Alva-Argáez A, Kokossis A, Kim J K, Smith R. Alva-Argáez A, Kokossis A, Kim J K, Smith R. Automated design of total water systems. Industrial & Engineering Chemistry Research, 2005, 44(3): 588–599

    Article  CAS  Google Scholar 

  51. Zheng P, Feng X, Qian F, Cao D. Water system integration of a chemical plant. Energy Conversion and Management, 2006, 47(15–16): 2470–2478

    Article  CAS  Google Scholar 

  52. Tan Y L, Manan Z A. Retrofit of water network with optimization of existing regeneration units. Industrial & Engineering Chemistry Research, 2006, 45(22): 7592–7602

    Article  CAS  Google Scholar 

  53. Feng X, Bai J, Wang H M, Zheng X S. Grass-roots design of regeneration recycling water networks. Computers & Chemical Engineering, 2008, 32(8): 1892–1907

    Article  CAS  Google Scholar 

  54. Boix M, Montastruc L, Pibouleau L, Azzaro-Pantel C, Domenech S. A multiobjective optimization framework for multicontaminant industrial water network design. Journal of Environmental Management, 2011, 92(7): 1802–1808

    Article  Google Scholar 

  55. Tudor R, Lavric V. Dual-objective optimization of integrated water/wastewater networks. Computers & Chemical Engineering, 2011, 35(12): 2853–2866

    Article  CAS  Google Scholar 

  56. Fan X Y, Li Y P, Liu Z Y, Pan C H. A new design method for water-using networks of multiple contaminants with the concentration potential concepts. Chemical Engineering Science, 2012, 73: 345–353

    Article  CAS  Google Scholar 

  57. Alva-Argbez A, Kokossis C, Smith R. Wastewater minimization of industrial systems using an integrated approach. Computers & Chemical Engineering, 1998, 22: 741–744

    Article  Google Scholar 

  58. Cao K, Feng X, Ma H. Pinch multi-agent genetic algorithm for optimizing water-using networks. Computers & Chemical Engineering, 2007, 31(12): 1565–1575

    Article  CAS  Google Scholar 

  59. Karuppiah R, Grossmann I E. Global optimization of multiscenario mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty. Computers & Chemical Engineering, 2008, 32(1–2): 145–160

    Article  CAS  Google Scholar 

  60. Feng X, Shen R J, Zheng X S, Lu C X. Water allocation network design concerning process disturbance. Industrial & Engineering Chemistry Research, 2011, 50(7): 3675–3685

    Article  CAS  Google Scholar 

  61. Tan R R, Foo D C Y, Manan Z A. Assessing the sensitivity of water networks to noisy mass loads using Monte Carlo simulation. Computers & Chemical Engineering, 2007, 31(10): 1355–1363

    Article  CAS  Google Scholar 

  62. Fu J, Cai T X, Xu Q. Coupling multiple water-reuse network designs for agile manufacturing. Computers & Chemical Engineering, 2012, 45(12): 62–71

    Article  CAS  Google Scholar 

  63. Zhou R J, Li L J, Xiao W, Dong H G. Simultaneous optimization of batch process schedules and water-allocation network. Computers & Chemical Engineering, 2009, 33(6): 1153–1168

    Article  CAS  Google Scholar 

  64. Li L J, Zhou R J, Dong H G. State-time-space superstructure-based MINLP formulation for batch water-allocation network design. Industrial & Engineering Chemistry Research, 2010, 49(1): 236–251

    Article  CAS  Google Scholar 

  65. Srinivas B K, El-Halwagi M M. Synthesis of combined heat reactive mass-exchange networks. Chemical Engineering Science, 1994, 13(13): 2059–2074

    Article  Google Scholar 

  66. Luo Y Q, Mao T B, Luo S C, Yuan X G. Studies on the effect of non-isothermal mixing on water-using network’s energy performance. Computers & Chemical Engineering, 2012, 36: 140–148

    Article  CAS  Google Scholar 

  67. Savulescu L, Kim J K, Smith R. Studies on simultaneous energy and water minimisation—Part I: Systems with no water re-use. Chemical Engineering Science, 2005, 60(12): 3279–3290

    Article  CAS  Google Scholar 

  68. Papalexandri K P, Pistikopoulous E N. A process synthesis modelling framework based on mass/heat transfer module hyperstructure. Computers & Chemical Engineering, 1995, 19: 71–76

    Article  Google Scholar 

  69. Bagajewicz M J, Pham R, Manousiouthakis V. On the state space approach to mass/heat exchanger network design. Chemical Engineering Science, 1998, 53(14): 2595–2621

    Article  CAS  Google Scholar 

  70. Savulescu L E, Sorin M, Smith R. Direct and indirect heat transfer in water network systems. Applied Thermal Engineering, 2002, 22(8): 981–988

    Article  CAS  Google Scholar 

  71. Savulescu L. Simultaneous energy and water minimization. Dissertation for the Doctoral Degree. Manchester: the University of Manchester Institute of Science and Technology, 1999

    Google Scholar 

  72. Feng X, Li Y, Yu X. Improving energy performance on water allocation networks through appropriate stream merging. Chinese Journal of Chemical Engineering, 2008, 16(3): 480–484

    Article  CAS  Google Scholar 

  73. Feng X, Li Y C, Shen R J. A new approach to design energy efficient water allocation networks. Applied Thermal Engineering, 2009, 29(11–12): 2302–2307

    Article  Google Scholar 

  74. Sorin M, Savulescu L. On minimization of the number of heat exchangers in water networks. Heat Trans Eng, 2004, 25(5): 30–38

    Article  CAS  Google Scholar 

  75. Bagajewicz M, Rodera H, Savelski M. Energy efficient water utilization systems in process plants. Computers & Chemical Engineering, 2002, 26(1): 59–79

    Article  CAS  Google Scholar 

  76. Zheng X, Feng X, Cao D. Design water allocation network with minimum fresh water and energy consumption. Comput Aided Chem Eng, 2003, 15: 388–393

    Article  Google Scholar 

  77. Savulescu L, Kim J K, Smith R. Studies on simultaneous energy and water minimization—Part II: Systems with maximum re-use of water. Chemical Engineering Science, 2005, 60(12): 3291–3308

    Article  CAS  Google Scholar 

  78. Manan Z A, Tea S Y, Wan Alwi S R. A new technique for simultaneous water and energy minimization in process plant. Chemical Engineering Research & Design, 2009, 87(11): 1509–1519

    Article  CAS  Google Scholar 

  79. Wan Alwi S R, Ismail A, Manan Z A, Handani Z B. A new graphical approach for simultaneous mass and energy minimization. Applied Thermal Engineering, 2011, 31(6–7): 1021–1030

    Article  CAS  Google Scholar 

  80. Bogataj M, Bagajewicz M. Synthesis of non-isothermal heat integrated water networks in chemical processes. Computers & Chemical Engineering, 2008, 32(12): 3130–3142

    Article  CAS  Google Scholar 

  81. Dong H G, Lin C Y, Chang C T. Simultaneous optimization approach for integrated water-allocation and heat-exchange networks. Chemical Engineering Science, 2008, 63(14): 3664–3678

    Article  CAS  Google Scholar 

  82. Leewongtanawit B, Kim J K. Synthesis and optimization of heatintegrated multiple contaminant water systems. Chemical Engineering and Processing, 2008, 47(4): 670–694

    Article  CAS  Google Scholar 

  83. Polley G T, Picón-Núñez M, López-Maciel J J. Design of water and heat recovery networks for the simultaneous minimization of water and energy consumption. Applied Thermal Engineering, 2010, 30(16): 2290–2299

    Article  Google Scholar 

  84. Boix M, Pibouleau L, Montastruc L, Azzaro-Pantel C, Domenech S. Minimizing water and energy consumptions in water and heat exchange networks. Applied Thermal Engineering, 2012, 36: 442–455

    Article  Google Scholar 

  85. Sahu G C, Bandyoadhyay S. Energy optimization in heat integrated water allocation networks. Chemical Engineering Science, 2012, 69(1): 352–364

    Article  CAS  Google Scholar 

  86. Huang Y L, Fan L T. Analysis of a work exchanger network. Industrial & Engineering Chemistry Research, 1996, 35(10): 3528–3538

    Article  CAS  Google Scholar 

  87. Jiang Z D, Jin Y M, Yin X W, Sun F Z, Ye C H, Zhang C Z. Discussion of piston energy recovery schemes. Zhejiang Journal of Engineer Institute, 1987, 3: 45–54 (in Chinese)

    Google Scholar 

  88. Yang S Z, Ma X B. The method of recovery the stream energy from the raw material gas in synthesis ammonia wet decarbonization process. Chemical Fertilizer Industry, 2006, 33: 17–19 (in Chinese)

    Google Scholar 

  89. Kyle B G. Chemical and Process Thermodynamics. New Jersey: Prentice Hall, 1992: 527

    Google Scholar 

  90. Zhang J Z, Zhang X J, Liu XM, Zhang X P, Zhu N S. The research of the devices in RO seawater desalination process. Technology Water Treatment, 2010, 36(6): 42–46 (in Chinese)

    CAS  Google Scholar 

  91. William T A, David S L. A twelve-year history of large scale application of work-exchanger energy recovery technology. Desalination, 2001, 138(1–3): 201–206

    Google Scholar 

  92. Merten U. Desalination by Reverse Osmosis. Massachusetts: MIT Press, 1966

    Google Scholar 

  93. Cheng C Y. US Patent 3489159, 1970.

  94. Taylor J. US Patent 3825122, 1974

  95. Song R W. The trial operation of Water turbine energy device is successful in our plant. M-sized Nitrogen Fertilizer Progross, 1986, 3: 18–19 (in Chinese)

    Google Scholar 

  96. Liu Q F, Zhou Y H, Ding W X. The review of hydraulic energy utilization technologies. J Chem Ind Eng, 2004, 25(4): 5–8 (in Chinese)

    Google Scholar 

  97. Ju M W, Chang Y Q, Zhou Y H. The review of the industry hydraulic energy recovery technology. Energy Conservation Technology, 2005, 134: 518–521 (in Chinese)

    Google Scholar 

  98. Yang S Z, Wang Y D. The research and selection of the natural gas desulfurization and decarbonization method. Chemical engineering of oil and gas, 2006, 35(5): 364–367 (in Chinese)

    CAS  Google Scholar 

  99. Fu J P, Li Y T, Yang S Z. The summary of the HST 40/13 energy recovery devices operation. Chemical Fertilizer industry, 2003, 31(3): 42–47 (in Chinese)

    Google Scholar 

  100. Yang S Z, Li S J, Li J Q, Qiu Z Q. Technical and economic analysis of applying energy recovery devices to modify copper wash process. Chemical Fertilizer Design, 2003, 41(6): 50–52 (in Chinese)

    Google Scholar 

  101. Schneider B S. Operation and control of a work exchanger energy recovery system based on the Singapore project. Desalination, 2005, 184(1–3): 197–210

    Article  CAS  Google Scholar 

  102. Pan X H, Wang S H, Ge Y H, Wang X N. The development and applying of energy recovery technology in the RO seawater desalination system. ChinaWater & Wastewater, 2010, 26(16): 16–19 (in Chinese)

    Google Scholar 

  103. Al Hawaj O M. US patent 20040052639A1

  104. Al-Hawaj O M. The work exchanger for reverse osmosis plants. Desalination, 2003, 157: 23–27

    Article  CAS  Google Scholar 

  105. Stover R L. Development of a fourth generation energy recovery device—A CTO’s notebook. Desalination, 2004, 165: 313–321

    CAS  Google Scholar 

  106. Cameron I B, Clemente R B. SWRO with ERI’s PX pressure exchanger device-a global survey. Desalination, 2008, 221(1–3): 136–142

    Article  CAS  Google Scholar 

  107. Migliorini G, Luzzo E. Seawater reverse osmosis plant using the pressure exchanger for energy recovery: a calculation model. Desalination, 2004, 165: 289–298

    CAS  Google Scholar 

  108. Mambrettia S, Orsia E, Gagliardib S, Stoverc R. Behaviour of energy recovery devices in unsteady flow conditions and application in the modelling of the Hamma desalination plant. Desalination, 2009, 238(1–3): 233–245

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingtao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Wang, J. Heat, mass, and work exchange networks. Front. Chem. Sci. Eng. 6, 484–502 (2012). https://doi.org/10.1007/s11705-012-1221-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-012-1221-5

Keywords

Navigation