Skip to main content
Log in

Separation of epigallocatechin-3-gallate from crude tea polyphenols by using Cellulose diacetate graft β-cyclodextrin copolymer asymmetric membrane

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

This study demonstrates a new Cellulose diacetate graft β-cyclodextrin (CDA-β-CD) copolymer asymmetric membrane prepared by a phase inversion technique for the separation of (−)-epigallocatechin-3-gallate (EGCG) from other polyphenols in crude tea. The graft copolymer, CDA-β-CD, was synthesized by prepolymerization of cellulose diacetate (CDA) and 1,6-hexamethylene-diisocyanate (HDI), which was then grafted with β-cyclodextrin (β-CD). Surface and crosssection morphologies of the CDA-β-CD membranes were analyzed by using scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FT-IR) indicated that the β-CD was grafted onto the CDA by chemical bonding. The influences of the HDI/CDA mass ratio and the catalyst mass fraction on the β-CD graft yield were investigated. The optimum conditions of a HDI/CDA mass ratio of 0.35 g·g−1 and a catalyst mass fraction of 0.18 wt-% produced a b-CD graft yield of 26.51 wt-%. The effects of the β-CD graft yield and the concentration of the polymer cast solution on the separation of EGCG were also investigated. Under optimum conditions of a β-CD graft yield of 24.21 wt-% and a polymer concentration of 13 wt-%, the purity of EGCG increased from 26.51 to 86.91 wt-%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nagle D G, Ferreira D, Zhou Y D. Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry, 2006, 67(17): 1849–1855

    Article  CAS  Google Scholar 

  2. Xu J, Sandström C, Janson J C, Tan T. Chromatographic retention of epigallocatechin gallate on oligo-β-cyclodextrin coupled sepharose media investigated using NMR. Chromatographia, 2006, 64(1–2): 7–11

    Article  CAS  Google Scholar 

  3. Xu J, Zhang G F, Tan T W, Janson J C. One-step purification of epigallocatechin gallate from crude green tea extracts by isocratic hydrogen bond adsorption chromatography on β-cyclodextrin substituted agarose gel media. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 2005, 824(1–2): 323–326

    CAS  Google Scholar 

  4. Kumamoto M, Sonda T, Takedomi K, Tabata M. Enhanced separation and elution of catechins in HPLC using mixed-solvents of water, acetonitrile and ethyl acetate as the mobile phase. Analytical Sciences, 2000, 16(2): 139–144

    Article  CAS  Google Scholar 

  5. Amarowicz R, Maryniak A, Shahidi F. TLC separation of methylated (−)-epigallocatechin-3-gallate. Czech Journal of Food Sciences, 2005, 23: 36–39

    CAS  Google Scholar 

  6. Kim J I, Hong S B, Row K H. Effect of particle size in preparative reversed-phase high-performance liquid chromatography on the isolation of epigallocatechin gallate from Korean green tea. Journal of Chromatography. A, 2002, 949(1–2): 275–280

    Article  CAS  Google Scholar 

  7. Sharma V, Gulati A, Ravindranath S D, Kumar V. A simple and convenient method for analysis of tea biochemicals by reverse phase HPLC. Journal of Food Composition and Analysis, 2005, 18(6): 583–594

    Article  CAS  Google Scholar 

  8. Yanagida A, Shoji A, Shibusawa Y, Shindo H, Tagashira M, Ikeda M, Ito Y. Analytical separation of tea catechins and food-related polyphenols by high-speed counter-current chromatography. Journal of Chromatography. A, 2006, 1112(1–2): 195–201

    Article  CAS  Google Scholar 

  9. Kartsova L A, Ganzha O V. Electrophoretic separation of tea flavanoids in the modes of capillary (zone) electrophoresis and micellar electrokinetic chromatography. Russian Journal of Applied Chemistry, 2006, 79(7): 1110–1114

    Article  CAS  Google Scholar 

  10. Bazinet L, Labbe D, Tremblay A. Production of green tea EGC- and EGCG- enriched fractions by a two-step extraction procedure. Separation and Purification Technology, 2007, 56(1): 53–56

    Article  CAS  Google Scholar 

  11. Chang C J, Chiu K L, Chen Y L, Chang C Y. Separation of catechins from green tea using carbon dioxide extraction. Food Chemistry, 2000, 68(1): 109–113

    Article  CAS  Google Scholar 

  12. Wu X H. Application of membrane-separation in food technology. Food Research and Development, 2005, 26: 11–13 (in Chinese)

    Google Scholar 

  13. Kim H J, Tyagi R K, Fouda A E, Ionasson K. The kinetic study for asymmetric membrane formation via phase-inversion process. Journal of Applied Polymer Science, 1996, 62(4): 621–629

    Article  CAS  Google Scholar 

  14. Wilbert M C, Pellegrino J, Zydney A. Bench-scale testing of surfactant-modified reverse osmosis/nanofiltration membranes. Desalination, 1998, 115(1): 15–32

    Article  CAS  Google Scholar 

  15. Sivakumar M, Malaisamy R, Sajitha C J, Mohan D, Mohan V, Rangarajan R. Ultrafiltration application of cellulose acetate-polyurethane blend membranes. European Polymer Journal, 1999, 35(9): 1647–1651

    Article  CAS  Google Scholar 

  16. Kozlowski C A, Sliwa W. The use of membranes with cyclodextrin units in separation processes: Recent advances. Carbohydrate Polymers, 2008, 74(1): 1–9

    Article  CAS  Google Scholar 

  17. Schneiderman E, Stalcup A M. Cyclodextrins: a versatile tool in separation science. J Chromatography B. Biomedical Science Application, 2000, 745(1): 83–102

    Article  CAS  Google Scholar 

  18. Tan Y, Hu A, Xia L, You T, Cao J. Synthesis and application of CDA-beta-CD in controlling release of drug. Journal of Applied Polymer Science, 2009, 113(3): 1811–1815

    Article  CAS  Google Scholar 

  19. Lee J W, Hua F J, Lee D S. Thermoreversible gelation of biodegradable poly(ɛ-caprolactone) and poly(ethylene glycol) multiblock copolymers in aqueous solutions. Journal of Controlled Release, 2001, 73(2–3): 315–327

    Article  CAS  Google Scholar 

  20. Pan X, Niu G, Liu H. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing, 2003, 42(2): 129–133

    Article  CAS  Google Scholar 

  21. Richter R, Muller H P U S. Patent, 5045226, 1991-09-03

  22. Ishizu T, Hirata C, Yamamoto H, Harano K. Structure and intramolecular flexibility of β-cyclodextrin complex with (−)-epigallocatechin gallate in aqueous solvent. Magnetic Resonance in Chemistry, 2006, 44(8): 776–783

    Article  CAS  Google Scholar 

  23. Ismail A F, Hassan A R. Effect of additive contents on the performances and structural properties of asymmetric polyethersulfone (PES) nanofiltration membranes. Separation and Purification Technology, 2007, 55(1): 98–109

    Article  CAS  Google Scholar 

  24. Strathmann H, Kock K, Amar P, Baker R W. The formation mechanism of asymmetric membranes. Desalination, 1975, 16(2): 179–203

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiyong Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Qin, P. Separation of epigallocatechin-3-gallate from crude tea polyphenols by using Cellulose diacetate graft β-cyclodextrin copolymer asymmetric membrane. Front. Chem. Sci. Eng. 5, 330–338 (2011). https://doi.org/10.1007/s11705-010-1104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-010-1104-6

Keywords

Navigation