Skip to main content
Log in

Structure controlling and process scale-up in the fabrication of nanomaterials

  • Review Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

Abstract

Nanotechnology is already having a significant commercial impact, and will very certainly have a much greater impact in the future. The research on process engineering and scale-up will be very important for the commercial production and application of nanomaterials, because the properties and structure of nanomaterials are not only determined by the nucleation and growth process, but also strongly affected by the engineering properties, such as the mixing, the heat and mass transfer, and also the distribution of temperature, concentration, etc. This paper will present some research work in our laboratory on the fabrication of nanomaterials. Based on the chemical engineering principle and methods, many kinds of novel nanomaterials can be synthesized and their structure can be easily controlled through adjusting the parameters of the fluid mixing, and the distribution of temperature, residence time and concentration, etc. By using the micro-mixing, heat and mass transfer and reaction control methods, the host-guest nanocomposites have been assembled and assumed as the novel electroanalytical sensing nanobiocomposite materials. Based on the principles of chemical engineering, the manufacturing technologies for magnetic powders, calcium carbonate, and titanium dioxide have been developed for commercial-scale production, and the largest production scale has reached 15 kt/year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Charpentier J C. The triplet “molecular processes-product-process” engineering: the future of chemical engineering? Chem Eng Sci, 2002, 57: 4667–4690

    Article  CAS  Google Scholar 

  2. Shi L Y, Li C Z, Chen A P, Zhu Y H, Fang D Y. Morphological structure of nanometer TiO2-Al2O3 composite powders synthesized in high temperature gas phase reactor. Chem Eng J, 2001, 84: 405–411

    Article  CAS  Google Scholar 

  3. Shi L Y, Li C Z, Chen A P, Zhu Y H, Fang D Y. Morphology and structure of nanosized TiO2 particles synthesized by gas-phase reaction. Mater Chem Phys, 2000, 66: 51–57

    Article  CAS  Google Scholar 

  4. Li C Z, Han J Y, Zhang Z T, Gu H C. Preparation of TiO2 coated Al2O3 particles by chemical vapor deposition in the rotary reactor. J Am Ceram Soc, 1999, 82: 2044–2048

    Article  CAS  Google Scholar 

  5. Li C Z, Hu L M, Yuan W K, Chen M H. Study on the mechanism of aluminum nitride synthesis by chemical vapor deposition. Mater Chem Phys, 1997, 47: 273–278

    Article  CAS  Google Scholar 

  6. Liu B H, Gu H C, Cheng Q L. Preparation of nanosized Mo powder by microwave plasma chemical vapor deposition method. Mater Chem Phys, 1999, 59: 204–209

    Article  CAS  Google Scholar 

  7. Zhu Y H, Zhu H J, Han J Y, Hu L M. Electric properties of Ag/Si3N4 nanostructured composites, J Inorg Mater, 1996, 11: 348–352

    CAS  Google Scholar 

  8. Zhao B, Liu Z, Zhang Z. Improvement of oxidation resistance of ultrafine copper powders by phosphating treatment. J Solid State Chem, 1997, 130: 157–160

    Article  CAS  Google Scholar 

  9. Zhao Y, Li C Z, Liu X H, Gu F, Jiang H B. Synthesis and optical properties of TiO2 nanoparticles by gas flame combustion. Mater Lett, 2007, 61: 79–83

    Article  CAS  Google Scholar 

  10. Zhao Y, Li C Z, Liu X H, Gu F. Highly enhanced degradation of dye with well-dispersed TiO2 nanoparticles under visible irradiation. J Alloy Compd, 2007, 440: 281–286

    Article  CAS  Google Scholar 

  11. Zhao Y, Li C Z, Liu X H, Gu F, Du H L. Surface characteristics and microstructure of dispersed TiO2 nanoparticles prepared by diffusion flame combustion. Mater Chem Phys, 2008, 107: 344–349

    Article  CAS  Google Scholar 

  12. Zhao Y, Li C Z, Gu F. Zn-doped TiO2 Nanoparticles with high photocatalysis activity synthesised by hydrogen-oxygen diffusion flames. Appl Catal B, 2008, 79: 208–215

    Article  CAS  Google Scholar 

  13. Zhou Q L, Li C Z, Gu F. Self-organized NiO architectures: synthesis and catalytic properties for growth of carbon nanotubes. J Alloy Compd, 2009, 474: 358–363

    Article  CAS  Google Scholar 

  14. Zhou Q L, Li C Z, Gu F, Du H L. Flame synthesis of carbon nanotubes with high density on stainless steel mesh. J Alloy Compd, 2008, 463: 317–322

    Article  CAS  Google Scholar 

  15. Wang L J, Li C Z, Gu F, Zhang C X. Facile flame synthesis and electrochemical properties of carbon nanocoils. J Alloy Compd, 2009, 473: 351–355

    Article  CAS  Google Scholar 

  16. Liu J, Hu Y J, Gu F, Li C Z. Flame synthesis of ball-in-shell-structured TiO2 nanospheres. Ind Eng Chem Res, 2009, 48: 735–739

    Article  CAS  Google Scholar 

  17. Hu Y J, Li C Z, Gu F, Ma J. Preparation and formation mechanism of alumina hollow nanostructures via high speed jet flame combustion. Ind Eng Chem Res, 2007, 46: 8004–8008

    Article  CAS  Google Scholar 

  18. Hu Y J, Li C Z, Gu F, Zhao Y. Facile flame synthesis and photoluminescent properties of core-shell TiO2-SiO2 nanoparticles. J Alloy Compd, 2007, 432: L5–L9

    Article  CAS  Google Scholar 

  19. Hu Y J, Li C Z, Gu F, Jiang H B, Zhao Y. Mechanism analysis and preparation of core-shell TiO2/SiO2 nanoparticles by H2/air flame combustions. J Inorg Mater, 2006, 22: 2253–2257

    CAS  Google Scholar 

  20. Gu F, Li C Z, Wang S F, Lu M K. Solution-phase synthesis of spherical zinc sulfide nanostructures. Langmuir, 2006, 22: 1329–1332

    Article  CAS  Google Scholar 

  21. Gu F, Li C Z, Wang S F. Solution-chemical synthesis of carbon nanotube/ZnS nanoparticle core/shell heterostructures. Inorg Chem, 2007, 46: 5343–5348

    Article  CAS  Google Scholar 

  22. Wang S F, Feng Gu, Li C Z, Lu M K. Synthesis of mesoporous Eu2O3 spindles. Cryst Growth & Des, 2007, 7: 2670–2674

    Article  CAS  Google Scholar 

  23. Chen J T, Gu F, Li C Z. Influence of precalcination and borondoping on the initial photoluminescent properties of SrAl2O4:Eu,Dy phosphors. Cryst Growth & Des, 2008, 8: 3175–3179

    Article  CAS  Google Scholar 

  24. Jiang H, Hu J Q, Gu F, Li C Z. Large-scaled, uniform, monodispersed ZnO colloidal microspheres. J Phys Chem C, 2008, 112: 12138–12141

    Article  CAS  Google Scholar 

  25. Gu F, Wang S F, Cao H M, Li C Z. Synthesis and optical properties of SnO2 nanorods. Nanotechnology, 2008, 19: 095708

    Article  Google Scholar 

  26. Hu J Q, Bando Y, Zhan J H, Li C Z, Golberg D. Mg3N2-Ga: nanoscale semiconductor-liquid metal heterojunctions inside carbon nanotubes. Adv Mater, 2007, 19: 1342–1346

    Article  CAS  Google Scholar 

  27. Zhu Y H, Cao H M, Tang L H, Yang X L, Li C Z. Immobilization of horseradish peroxidase in three-dimensional macroporous TiO2 matrices for biosensor applications. Electrochim Acta, 2009, 54: 2823–2827

    Article  CAS  Google Scholar 

  28. Li Y X, Zhu Y H, Li C Y, Yang X L, Li C Z. Synthesis of ZnS nanoparticles into the pore of mesoporous silica spheres. Mater Lett, 2009, 63: 1068–1070

    Article  CAS  Google Scholar 

  29. Wang P, Zhu Y H, Yang X L, Li C Z, Du H L. Synthesis of CdSe nanoparticles into the pores of mesoporous silica microspheres. Acta Mater, 2008, 56: 1144–1150

    Article  CAS  Google Scholar 

  30. Li Y X, Zhu Y H, Yang X L, Li C Z. Mesoporous silica spheres as microreactors for performing CdS nanocrystal synthesis. Cryst Growth Des, 2008, 8: 4494–4498

    Article  CAS  Google Scholar 

  31. Cao H M, Zhu Y H, Tang L H, Yang X L, Li C Z. A glucose biosensor based on immobilization of glucose oxidase into 3D macroporous TiO2. Electroanalysis, 2008, 20: 2223–2228

    Article  CAS  Google Scholar 

  32. Guo F, Zhu Y H, Yang X L, Li C Z. Electrostatic layer-by-layer selfassembly of PAMAM-CdS nanocomposites on MF microspheres. Mater Chem Phys, 2007, 105: 315–319

    Article  CAS  Google Scholar 

  33. Wang P, Zhu Y H, Yang X L, Li C Z. Electrochemical synthesis of magnetic nanoparticles within mesoporous silica microspheres. Colloid Surf A, 2007, 294: 287–291

    Article  CAS  Google Scholar 

  34. Cheng Q L, Pavlinek V, Lengalova A, Li C Z, He Y, Saha P. Conducting polypyrrole confined in ordered mesoporous silica SBA-15 channels: preparation and its electrorheology. Micropor Mesopor Mater, 2006, 93: 263–269

    Article  CAS  Google Scholar 

  35. Cheng Q L, Pavlinek V, Lengalova A, Li C Z, He Y, Saha P. Electrorheological properties of new mesoporous material with conducting polypyrrole in mesoporous silica. Micropor Mesopor Mater, 2006, 94: 193–199

    Article  CAS  Google Scholar 

  36. Cheng Q L, Pavlinek V, Li C Z, Lengalova A, He Y, Saha P. Synthesis and characterization of new mesoporous materials with conducting polypyrrole confined in mesoporous silica. Mater Chem Phys, 2006, 98: 504–508

    Article  CAS  Google Scholar 

  37. Cheng Q L, Pavlinek V, He Y, Lengalova A, Li C Z, Saha P. Surfactant-assisted polypyrrole/titanate composite nanofibers: morphology, structure and electrical properties. Synthetic Met, 2008, 158: 953–957

    Article  CAS  Google Scholar 

  38. Xu L H, Zhu Y H, Yang X L, Li C Z. Amperometric biosensor based on carbon nanotubes coated with polyaniline/dendrimer-encapsulated Pt nanoparticles for glucose detection. Mater Sci Eng: C, 2009, 29: 1306–1310

    Article  CAS  Google Scholar 

  39. Tang L H, Zhu Y H, Yang X L, Sun J J, Li C Z. Self-assembled CNTs/SgSe/dehydrogenase hybrid-based amperometric biosensor triggered by photovoltaic effects. Biosens Bioelectron, 2008, 24: 319–323

    Article  CAS  Google Scholar 

  40. Tang L H, Zhu Y H, Yang X L, Li C Z. An enhanced biosensor for glutamate based on self-assembled carbon nanotubes and dendrimer-encapsulated platinum nanobiocomposites-doped polypyrrole film. Anal Chim Acta, 2007, 597: 145–150

    Article  CAS  Google Scholar 

  41. Tang L H, Zhu Y H, Xu L H, Yang X L, Li C Z. Amperometric glutamate biosensor based on self-assembling glutamate dehydrogenase and dendrimer-encapsulated platinum nanoparticles onto carbon nanotubes. Talanta, 2007, 73: 438–443

    Article  CAS  Google Scholar 

  42. Xu L H, Zhu Y H, Tang L H, Yang X L, Li C Z. Biosensor based on self-assembling glucose oxidase and dendrimer-encapsulated pt nanoparticles on carbon nanotubes for glucose detection. Electroanalysis, 2007, 19: 717–722

    Article  CAS  Google Scholar 

  43. Tang L H, Zhu Y H, Xu L H, Yang X L, Li C Z. Properties of dendrimer-encapsulated Pt nanoparticles doped polypyrrole composite films and their electrocatalytic activity for glucose oxidation. Electroanalysis, 2007, 19: 1677–1682

    Article  CAS  Google Scholar 

  44. Zhu Y H, Zhu H Y, Yang X L, Xu L H, Li C Z. Sensitive biosensors based on (dendrimer encapsulated pt nanoparticles)/enzyme multilayers. Electroanalysis, 2007, 19: 698–703

    Article  CAS  Google Scholar 

  45. Zhu H Y, Zhu Y H, Yang X L, Li C Z. Multiwalled carbon nanotubes incorporated with dendrimer encapsulated with Pt nanoparticles: an attractive material for sensitive biosensors. Chem Lett, 2006, 35: 326–327

    Article  CAS  Google Scholar 

  46. Li C Z, Cai S Y, Fang T N. Rheological behavior of aciculate ultrafine α-FeOOH particle preparation system under alkaline conditions. J Solid State Chem, 1998, 141: 94–98

    Article  CAS  Google Scholar 

  47. Chen F Y, Gu Y F, Wang S, Hu L M. Thixotropy-antithixotropy behavior of concentrated surface modified ultrafine calcium carbonate suspension. Chem Res Chinese Univ, 1998, 19: 99–102 (in Chinese)

    CAS  Google Scholar 

  48. Chen F Y, Xu Y, Wang S, Gu Y F, Hu L M. Rhelogical properties of surface modified ultrafine calcium carbonate suspensions. J East China Univ Sci Techn (China), 1994, 20: 750–752 (in Chinese)

    Google Scholar 

  49. Li C Z, Hua B. Preparation of nanocrystalline SnO2 thin film coated Al2O3 ultrafine particles by fluidized chemical vapor deposition. Thin Solid Film, 1997, 310: 238–243

    Article  CAS  Google Scholar 

  50. Hua B, Li C Z. Production and characterization of nanocrystalline SnO2 films on Al2O3 agglomerates by CVD in a fluidized bed. Mater Chem Phys, 1999, 59: 130–135

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunzhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C. Structure controlling and process scale-up in the fabrication of nanomaterials. Front. Chem. Eng. China 4, 18–25 (2010). https://doi.org/10.1007/s11705-009-0305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-009-0305-3

Keywords

Navigation