Skip to main content
Log in

Advancements in non-starch polysaccharides research for frozen foods and microencapsulation of probiotics

  • Review Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

Abstract

Conventionally used in the food industry as stabilizing, thickening, gelling, and suspending or dispersing agents, non-starch polysaccharides such as xanthan gum are known to improve the texture of certain frozen products. Another polysaccharide that has received significant attention in recent years is chitosan, a natural biopolymer derived from chitin. In the wake of growing interest in finding ideal encapsulating agents for probiotics, non-starch polysaccharides have been investigated. Scattered research can be found on the effect of each individual polysaccharide, but there remains a void in the literature in terms of closely comparing the characteristics of non-starch polysaccharides for these applications, especially when more than one biopolymer is employed. A good understanding of the tools capable of elucidating the underlying mechanisms involved is essential in ushering further development of their applications. Therefore, it is this review’s intention to focus on the selection criteria of non-starch polysaccharides based on their rheological properties, resistance to harsh conditions, and ability to improve sensory quality. A variety of critical tools is also carefully examined with respect to the attainable information crucial to frozen food and microencapsulation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glicksman M. Food Hydrocolloids. Boca Raton: CRC Press, Inc. 1986, 3

    Google Scholar 

  2. Williams P A, Phillips G O. Handbook of Hydrocolloids. Boca Raton: CRC Press LLC, 2000, 1–19

    Google Scholar 

  3. Hoefler A C. Hydrocolloids. St. Paul: Eagan Press, 2004, 7–25

    Google Scholar 

  4. Mandala I G, Sawas T P, Kostaropoulos A E. Xanthan and locust bean gum influence on the rheology and structure of a white model-sauce. J Food Eng, 2004, 64: 335–342

    Google Scholar 

  5. Sikor M, Badrie N, Deisingh A K, Kowalski S. Sauces and dressings: a review of properties and applications. Critical Reviews in Food Science and Nutrition, 2008, 48: 50–77

    Google Scholar 

  6. Garti N, Leser N M. Emulsification properties of hydrocolloids. Polym Adv Technol, 2001, 12: 123–135

    CAS  Google Scholar 

  7. Dickenson E. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 2008, 23: 1473–1482

    Google Scholar 

  8. Mikkonen K S, Tenkanen M, Cooke P, Xu C, Rita H, Willfo S, Holmbom B, Hicks K B, Yadav MP. Mannans as stabilizers of oilin-water beverage emulsions. LWT-Food Sci Technol, 2009, 42: 849–855

    CAS  Google Scholar 

  9. Goud K, Desai H, Park H J. Recent developments in microencapsulation of food ingredients. Drying Technol, 2005, 23: 1361–1394

    Google Scholar 

  10. Gouin S. Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol, 2004, 15: 330–347

    CAS  Google Scholar 

  11. Freeland M. Formulation tips on Hydrocolloids. Prepared Foods, 2002, 171: 69

    Google Scholar 

  12. Goff H D. Gums and Stabilisers for the Food Industry 13. Williams P A, Phillips G O, eds. Cambridge: Royal Society of Chemistry. 2006, 403–412

    Google Scholar 

  13. Towle G A. Gums and Stabilisers for the Food Industry 8. Phillips G O, Williams P A, Wedlock D J, eds. New York: Oxford University Press, Inc., 1996, 79–87

    Google Scholar 

  14. Marshall RT, Goff H D, Hartel RW. Ice Cream. 6th ed. New York: Kluwer Academic/Plenum Publishers, 2003

    Google Scholar 

  15. Sworn G. Handbook of hydrocolloids. Phillips G O, Williams PA, eds. Boca Raton: CRC Press LLC, 2000, 103–115

    Google Scholar 

  16. Champion, S. Gums and Stabilisers for the Food Industry 8. Phillips G O, Williams P A, Wedlock D J, eds. New York: Oxford University Press, Inc., 1996, 361–366

    Google Scholar 

  17. Imeson A P, Humphreys W. Thickening and gelling agents for food. Imeson A P, ed. Suffolk: St Edmunsbury Press, 1997, 180–197

    Google Scholar 

  18. Anal A K, Stevens W F. Chitosan-alginate multilayer beads for controlled release of ampicillin. Int J Pharm, 2005, 290: 45–54

    CAS  Google Scholar 

  19. Gibbs B F, Kermasha S, Alli I, Mulligan C N. Encapsulation in the food industry: a review, Int J Food Sci Nutr, 1999, 50: 213–224

    CAS  Google Scholar 

  20. Schrooyen PMM, Meer V D R, Kruif C G D. Microencapsulation: its application in nutrition. In: Proceedings of Nutrition Society. Cambridge: Cambridge University Press, 2001, 60: 475–479

    Google Scholar 

  21. Agullo E, Rodriguez M S, Ramos V, Albertengo L. Present and future role of chitin and chitosan in food. Macromol Biosci, 2003, 3: 521–530

    CAS  Google Scholar 

  22. Shahidi F, Kamil J, Arachichi V, Jeon Y J. Food applications of chitin and chitosans. Trends Food Sci Technol, 1999, 10: 37–51

    CAS  Google Scholar 

  23. FAO/WHO Experts Report. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. 2001

  24. Dave R I, Shah N P. Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. Int Dairy J, 1997, 7: 31–41

    Google Scholar 

  25. Wielinga W C, Maehall A G. Handbook of Hydrocolloids. Phillips G O, Williams P A, eds. Boca Raton: CRC Press LLC, 2000, 137–154

    Google Scholar 

  26. Goycoola F M, Morris E R, Gidley M. Viscosity of galactomannans at alkaline and neutral pH: evidence of ‘hyperentanglement” in solution. Carbohydr Polym, 1995, 27: 69–71

    Google Scholar 

  27. Sandolo C, Matricardi P, Alhaique F, Coviello T. Effect of temperature and cross-linking density on rheology of chemical cross-linked guar gum at the gel point. Food Hydrocolloids, 2008, 23: 210–220

    Google Scholar 

  28. FDA. 1996. 21 CFR 172: Food additives permitted for direct addition to food for human consumption: Curdlan. Federal Regulations 61, 65941–65942

    Google Scholar 

  29. Williams P D, Sadar L N, Lo Y M. Texture stability of hydrogel complex containing curdlan gum over multiple freeze-thaw cycles. J Food Process Preserv, 2009, 33: 126–139

    CAS  Google Scholar 

  30. Downey G. Quality changes in frozen and thawed, cooked pureed vegetables containing hydrocolloids, gums and dairy powders. Int J Food Sci Technol, 200237: 869–877

  31. Ribotta P D, Pérez G T, León Añón. Effect of emulsifier and guar gum on micro structural, rheological and baking performance of frozen bread dough. Food Hydrocolloids, 2004, 18: 305–313

    CAS  Google Scholar 

  32. Krishnaiah Y S R, Raju P V, Kumar B D, Bhaskar P, Satyanarayana V. Development of colon targeted drug delivery systems for mebendazole. J Controlled Release, 2001, 77: 87–95

    CAS  Google Scholar 

  33. Krishnaiah Y S R, Karthikeyan R S, Sankar V G, Satyanarayana V. Three-layer guar gum matrix tablet formulations for oral controlled delivery of highly soluble trimetazidine dihydrochloride. J Controlled Release, 2002, 81: 45–56

    CAS  Google Scholar 

  34. Gliko-Kabir I, Yagen B, Baluom M, Rubinstein A. Phosphated crosslinked guar for colon-specific drug delivery II. In vitro and in vivo evaluation in the rat. J Controlled Release, 2000, 63: 129–134

    CAS  Google Scholar 

  35. Wong D, Larrabee S, Clifford K, Tremblay J, Friend D R. USP dissolution apparatus III (Reciprocating Cylinder) for screening of guar-based colonic delivery formulations. J Controlled Release, 1997, 47: 173–179

    CAS  Google Scholar 

  36. Ding W K, Shah N P. Effect of various encapsulating materials on the stability of probiotic bacteria. J Food Sci, 2009, 74(2): M100–M107

    CAS  Google Scholar 

  37. Dea I C M, Morris E R, Rees D A, Welsh E J, Barnes H A, Price J. Associations of like and unlike polysaccharides: mechanism and specificity in galactomannans, interacting bacterial polysaccharides, and related systems. Carbohydr Res, 1977, 57: 249–272

    CAS  Google Scholar 

  38. Tanaka R, Hatakeyama T, Hatakeyama H. Formation of locust bean gum hydrogel by freezing-thawing. Polym Intern, 1998, 45: 118–126

    CAS  Google Scholar 

  39. Lozinsky V I, Damshkaln L G, Brown R, Norton I T. Study of cryostructuring of polymer systems. XIX. On the nature of intermolecular links in the cryogels of locust bean gum. Polym Int, 2000, 49: 1434–1443

    CAS  Google Scholar 

  40. Lozinsky V I, Plieva F M, Galaev I Y, Mattiasson B. The potential of polymeric cryogels in bioseparation. Bioseperation, 2001, 10: 163–188

    CAS  Google Scholar 

  41. Zeira A, Nussinovitch A. Mechanical Properties of weak locust bean gum (LBG) Gels under controlled rapid freeze-thawing. Journal of Texture Studies, 2004, 34: 561–573

    Google Scholar 

  42. Rocks J K. Xanthan gum. Food Technol, 1971, 25: 476–483

    CAS  Google Scholar 

  43. Wang F, Wang Y J, Sun Z. Conformational role of xanthan in its interaction with locust bean gum. J Food Sci, 2002b, 67: 2609–2614

    CAS  Google Scholar 

  44. Higiro J, Herald T J, Alavi S. Rheological study of xanthan and locust bean gum interaction in dilute solution. Food Res Int, 2006, 39: 165–175

    CAS  Google Scholar 

  45. Sharadanant R, Khan K. Effect of hydrophilic gums on frozen dough. I. Dough quality. Cereal Chem, 2003a, 80: 764–772

    CAS  Google Scholar 

  46. Sharadanant R, Khan K. Effect of hydrophilic gums on frozen dough. II. Bread characteristics. Cereal Chem, 2003b, 80: 773–780

    CAS  Google Scholar 

  47. Mandala I, Kapetanakou A, Kostaropoulos A. Physical properties of breads containing hydrocolloids stored at low temperature. II. Effect of freezing. Food Hydrocolloids, 2008, 22: 1443–1451

    CAS  Google Scholar 

  48. Onsoyen E. Thickening and Gelling Agents for Food. 2nd ed. Imeson A, ed. New York: Chapman & Hall, 1997, 22–44

    Google Scholar 

  49. Draget K I. Handbook of hydrocolloids. Phillips G O, Williams P A, eds. Boca Raton: CRC Press LLC, 2000, 379–397

    Google Scholar 

  50. Shon J, Yun Y, Shin M, Chin K B, Eun J B. Effects of milk protiens and gums on quality of bread made from frozen dough. J Sci Food Agric, 2009, 89: 1407–1415

    CAS  Google Scholar 

  51. Lee J S, Cha D S, Park H J. Survival of freeze dried Lactobacillus bulgaricus KFRI 673 in chitosan coated calcium alginate microparticles. J Agric Food Chem, 2004, 52: 7300–7305

    CAS  Google Scholar 

  52. Doleyres Y, Fliss I, Lacroix C. Increasesd stress tolerance of Bifidobacterium longum and Lactococcus lactis produced during continuous mixed strain immobilized cell fermentation. J Appl Microbiol, 2004, 97: 527–539

    CAS  Google Scholar 

  53. Ross G M, Gusils C, Gonzalez S N. Microencapsulation of probiotic strains for swine feeding. Biol Pharm Bull, 2008, 31(11): 2121–2125

    CAS  Google Scholar 

  54. Ding W K, Shah N P. An improved method of microencapsulation of probiotic bacteria for their stability in acidic and bile conditions during storage. J Food Sci, 2008, 74(2): M53–M61

    Google Scholar 

  55. Hansen L T, Allan-Wojtas P M, Jin Y L, Paulson AT. Survival of Ca-alginate microencapsulated bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol, 2002, 19: 35–45

    CAS  Google Scholar 

  56. Imeson A P. Handbook of Hydrocolloids. Phillips G O, Williams P A, eds. Boca Raton: CRC Press LLC, 2000, 87–102

    Google Scholar 

  57. Fox J E. Thickening and gelling agents for foods. Imeson A, ed. New York: Chapman & Hall, 1997, 262–283

    Google Scholar 

  58. Tsen Z H, Lin Y P, Haung H Y, King V A E. Studies on the fermentation of tomato juice by using κ-carrageenan immobilized lactobacillus acidophilus. J Food Process Preserv, 2008, 32: 178–189

    CAS  Google Scholar 

  59. Adhikari K, Mustapha A, Grun I U, Fernando A. Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. J Dairy Sci, 2000, 83: 1946–1951

    CAS  Google Scholar 

  60. Audet P, Paquin C, Lacroix C. Effect of medium and temperature of storage on viability of lactic acid bacteria immobilized in κ-carrageenan-locust bean gum gel beads. Biotechnol Tech, 1991, 5(4): 307–312

    Google Scholar 

  61. Harada T, Okuyama K, Konno A, Koreeda A, Harada A. Effect of heating on formation of curdlan gels. Carbohydr Polym, 1994, 24: 101–106.

    CAS  Google Scholar 

  62. Hirashima M, Takaya T, Nishinari K. DSC and rheological studies on aqueous dispersions of curdlan. Thermochim Acta, 1997, 306: 109–114

    CAS  Google Scholar 

  63. Nakao Y. Properties and food applications of curdlan. Agro-Food-Industry Hi-Tech, January/February 1997, 12–15

  64. McIntosh M, Stone B A, Stanisich V A. Curdlan and other bacterial (1 → 3)-β-D-glucans. Appl Microbiol Biotechnol, 2005, 68: 163–173

    CAS  Google Scholar 

  65. Gagnon M A, Lafleur M. From curdlan powder to the triple helix gel structure: an attenuated total reflection-infrared study of the gelation process. Appl Spectrosc, 2007, 61: 374–378

    CAS  Google Scholar 

  66. Tada T, Matsumoto T, Masuda T. Dynamic viscoelasticity and small-angle X-ray scattering studies on the gelation mechanism and network structure of curdlan gels. Carbohydr Polym, 1999, 39: 53–59

    CAS  Google Scholar 

  67. Hatakeyama T, Ueda C, Hatakeyama H. Structural change of water by gelation of curdlan suspension. J Therm Anal Calorim, 2006, 85: 661–668

    CAS  Google Scholar 

  68. Pederson J. Polysaccharides in Food. Blanshard J M V, Mitchell J R, eds. London: Butterworths, 1979, 219–227

    Google Scholar 

  69. Harada T, Masada M, Fujimari K, Maeda I. Production of a firm, resilient gel-forming polysaccharide by a mutant of Alcaligenes faecalis var. myxogenes 10C3. Agric Biol Chem, 1966, 30: 196–19

    Google Scholar 

  70. Saito H, Miyata E, Sasaki Y. A 13C nuclear magnetic resonance study of gel-forming (1 → 3)-β-Dglucans: molecular-weight dependence of helical conformation and of the presence of junction zones for association of primary molecules. Macromolecules, 1978, 11: 1244–1251

    CAS  Google Scholar 

  71. Marchessault R H, Deslandes Y. Fine structure of (1 → 3)-β-Dglucans: curdlan and paramylon. Carbohydr Res, 1978, 75: 231–242

    Google Scholar 

  72. Nakao Y, Konno A, Taguchi T, Tawada T, Kasai H, Toda J, Terasaki M. Curdlan: Properties and application to foods. J Food Sci, 1991, 56: 769–772

    CAS  Google Scholar 

  73. Jezequal V. Curdlan: a new functional beta-glucan. Cereal Foods World, 1998, 43: 361–364

    Google Scholar 

  74. Kanzawa Y, Harada T, Koreeda A, Harada A. Curdlan gel formed by neutralizing its alkaline solution. Agric Biol Chem, 1987, 51: 1839–1843

    CAS  Google Scholar 

  75. Sanderson G R. Gums and their use in food systems. Food Technol, 1996, 50: 81–84

    Google Scholar 

  76. Harada T, Harada A. Polysaccharides in Medical Applications. Dumitriu S, ed. Boca Raton: CRC Press, 1996, 21–58

    Google Scholar 

  77. Na K, Park K H, Kim S W, Bae Y H. Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anticancer drug release and interaction with a hepatoma cell line (HepG2). J Controlled Release, 2000, 69: 225–236

    CAS  Google Scholar 

  78. Lopes D, Silva J A, Rao M A, Fu J T. 1998. Phase/State Transitions in Foods. Rao M A, Hartel R W, eds. New York: Marcel Dekker, Inc., 1998, 111–157

    Google Scholar 

  79. Funami M F, Yada H, Nakao Y. Rheological and thermal studies on gelling characteristics of curdlan. Food Hydrocolloids, 1999, 13: 317–324

    CAS  Google Scholar 

  80. Sadar L N. Rheological and textural characteristics of copolymerized hydrocolloidal solutions containing curdlan gum. Dissertation for the Masters Degree. Maryland: University of Maryland, 2004

    Google Scholar 

  81. Nishinari H Z. Handbook of Hydrocolloids. Phillips G O, Williams P A, eds. Boca Raton: CRC Press LLC, 2000, 269–286

    Google Scholar 

  82. Hsu S Y, Chung H Y. Interactions of konjac, agar, curdlan gum, κ-carrageenan and reheating treatment in emulsified meatballs. J Food Eng, 2000, 44: 199–204

    Google Scholar 

  83. Lo C T, Ramsden L. Effects of xanthan and galactomannan on the freeze/thaw properties of starch gels. Nahrung, 2000, 44: 211–214

    CAS  Google Scholar 

  84. Lee M H, Baek M H, Cha D S, Park H J, Lim S T. Freeze-thaw stabilization of sweet potato starch gel by polysaccharide gums. Food Hydrocolloids, 2002, 16: 345–352

    CAS  Google Scholar 

  85. Lo Y M, Robbins K L, Argin-Soysal S, Sadar L N. Viscoelastic effects on the diffusion properties of curdlan gels. J Food Sci, 2003, 68: 2057–2063

    CAS  Google Scholar 

  86. Whitcomb P J, Macosko C W. Rheology of Xanthan Gum. J Rheol, 1978, 22: 493–505

    CAS  Google Scholar 

  87. Wang F, Wang Y J, Sun Z. Conformational role of xanthan in its interaction with guar gum. J Food Sci, 2002a, 67: 3289–3

    CAS  Google Scholar 

  88. Pai V, Srinivasarao M, Khan S A. Evolution of microstructure and rheology in mixed polysaccharide systems. Macromolecules, 2002, 35: 1699–1707

    CAS  Google Scholar 

  89. Richter S, Boyko V, Matzker R, Schröter K. A thermoreversible gelling system: mixtures of xanthan gum and locust-bean gum. Macromol Rapid Commun, 2004, 25: 1504–1509

    CAS  Google Scholar 

  90. Kim B, Takemasa M, Nishinari K. Synergistic interaction of xyloglucan and xanthan investigated by rheology, differential scanning calorimetry, and NMR. Biomacromolecules, 2006, 7: 1223–1230

    CAS  Google Scholar 

  91. Paradossi G, Chiessi E, Barbiroli A, Fessas D. Xanthan and glucomannan mixtures: synergistic interactions and gelation. Biomacromolecules, 2002, 3: 498–504

    CAS  Google Scholar 

  92. Makri E A, Doxastakis G I. Study of emulsions stabilized with phaseolus vulgaris or phaseolus coocineus with the addition of Arabic gum, locust bean gum and xanthan gum. Food Hydrocolloids, 2006, 20: 1141–1152

    CAS  Google Scholar 

  93. Chaisawang M, Suphantharika M. Pasting and rheological properties of native and anionic tapioca starches as modified by guar gum and xanthan gum. Food Hydrocolloids, 2006, 20: 641–649

    CAS  Google Scholar 

  94. Giannouli P, Morris E R. Cryogelation of xanthan. Food Hydrocolloids, 2003, 17: 495–501

    CAS  Google Scholar 

  95. Mandala I G. Physical properties of fresh and frozen stored, microwaved-reheated breads, containing hydrocolloids. J Food Eng, 2005, 66: 291–300

    Google Scholar 

  96. Matuda T G, Chevallier S, Filho P A P, LeBail A, Tadini C C. Impact of guar and xanthan gums on proofing and calorimetric parameters of frozen bread dough. J Cereal Sci, 2008, 48: 741–746

    CAS  Google Scholar 

  97. Wenrong S, Griffiths M W. Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int J Food Microbiol, 2000, 61: 17–25

    Google Scholar 

  98. Elcin Y M. Encapsulation of urease enzyme in xanthan-alginate spheres. Biomater, 1995, 16: 1157–1161

    CAS  Google Scholar 

  99. Dumitriu S, Chornet E. Immobilization of xylanase in chitosanxanthan hydrogels. Biotechnol Prog, 1997, 13: 539–545

    CAS  Google Scholar 

  100. Soma P K, Lo Y M. Characterization of the diffusional properties of polyelectrolyte complex gel formed by xanthan and chitosan. In: Institute of Food Technologists, Annual Meeting and Food Expo Abstract Book, 2009

  101. Granz A J. Cellulose Hydrocolloids. In: Food Colloids. Graham H, ed. Westport: The AVI Publishing Company, Inc., 1977, 382–417

    Google Scholar 

  102. Murray J C F. Handbook of Hydrocolloids. Phillips G O, Williams P A, eds. Boca Raton: CRC Press LLC, 2000, 219–229

    Google Scholar 

  103. Yaşar F, Toğrul H, Arslan N. Flow properties of cellulose and carboxymethyl cellulose from orange peel. J Food Eng, 2007, 81: 187–199

    Google Scholar 

  104. Iijima H, Takeo K. Handbook of Hydrocolloids. Phillips G O, Williams P A, eds. Boca Raton: CRC Press LLC, 2000, 331–346

    Google Scholar 

  105. Ghaouth E A, Arul J, Asselin A, Benhamou N. Antifungal activity of chitosan on post harvest pathogens: induction of morphological and cytological alterations an rhizopus stolonifer. Mycol Res, 1992, 96: 769–779

    Google Scholar 

  106. Jeuniaux C. Chitin in Nature and Technology. Muzzarelli R A A, Jeuniaux C, Gooday G W eds. New York: Plenum Press, 1986, 551–570

    Google Scholar 

  107. Soto-Perlata N V, Muller H, Knorr D. Effect of chitosan treatments on the clarity and color of apple juice. J Food Sci, 1989, 54: 495–496

    Google Scholar 

  108. Kumar R M N V, Muzzarelli R A A, Muzzarelli C, Sashiwa H, Domb A J. Chitosan chemistry and pharmaceutical perspectives. Chem Rev, 2004, 104: 6017–6084

    Google Scholar 

  109. Shahidi F, Abuzaytoun A. Applications of chitin and chitosan and their oligomers: Taylor, S. L. Adv Food Nutr Res, 2005, 49: 114–128

    Google Scholar 

  110. Sathivel S, Liu Q, Huang J, Prinyawiwatkul W. The influence of chitosan glazing on quality of skinless pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. J Food Eng, 2007, 83: 366–373

    CAS  Google Scholar 

  111. Han C, Zhao Y, Leonard S W, Traber. Edible coatings to improved storability and enhance nutritional value of fresh and frozen strawberries (Fragaria x ananassa) and raspberries (Rubus ideaus). Postharvest Biol Technol, 2004, 33: 67–78

    CAS  Google Scholar 

  112. Williams P A, Langdon M J. The influence of locust bean gum and dextran on the gelation of kappa-carrageenan. Biopolymers, 1996, 38: 655–664

    CAS  Google Scholar 

  113. Ikeda S, Nitta Y, Kim B S, Temsiripong T, Pongsawatmanit R, Nishinari K. Single-phase mixed gels of xyloglucan and gellan. Food Hydrocolloids, 2004, 18: 669–675

    CAS  Google Scholar 

  114. Richter S, Brand T, Berger S. Comparative monitoring of the gelation process of a thermoreversible gelling system made of xanthan gum and locust bean gum by dynamic light scattering and 1H NMR Spectroscopy. Macromol Rapid Commun, 2005, 26: 548–553

    CAS  Google Scholar 

  115. Rodd A B, Dunstan D E, Boger D V, Schmidt J, Burchard W. Heterodyne and nonergodic approach to dynamic light scattering of polymer gels: aqueous xanthan in the presence of metal ions (aluminum (III)). Macromolecules, 2001, 34: 3339–3352

    CAS  Google Scholar 

  116. Sanchez C, Zuniga-Lopez R, Schmitt C, Despond S, Hardy J. Microstructure of acid-induced skim milk-locust bean gumxanthan gels. Int Dairy J, 2000, 10: 199–212

    CAS  Google Scholar 

  117. Fernández P P, Martino M N, Zaritzky N E, Guignon B, Sanz P D. Effects of locust bean, xanthan and guar gums on the ice crystals of sucrose solution frozen at high pressure. Food Hydrocolloids, 2007, 21: 507–515

    Google Scholar 

  118. Pinotti A, Garcia M A, Martino M N, Zaritzky N E. Study on microstructure and physical properties of composite films based on chitosan and methylcellulose. Food Hydrocolloids, 2007, 21: 66–72

    CAS  Google Scholar 

  119. Dunstan D E, Chen Y, Liao M L, Salvatore R, Boger D V, Prica M. Structure Rheology of the κ-carrageenan/locust bean gum gels. Food Hydrocolloids, 2001, 15: 475–484

    CAS  Google Scholar 

  120. MacArtain P, Jacquier J C, Dawson K A. Physical characteristics of calcium induced kappa- carrageenan networks. Carbohydr Polym, 2003, 53: 395–400

    CAS  Google Scholar 

  121. Medina-Torres L, Brito-De La Fuente E, Gómez-Aldapa C A, Aragon-Piña A, Toro-Vazquez J F. Structural characteristics of gels formed by mixtures of carrageenan and mucilage gum from Opuntia ficus indica. Carbohydr Polym, 2006, 63: 299–309

    CAS  Google Scholar 

  122. Rao V S R, Qasba P K, Balaji P V, Chandrasekaran R. Conformation of carbohydrates. Amsterdam: Overseas Publishers Association, 1998, 29

    Google Scholar 

  123. Martin D R, Ablett S, Darke A, Sutton R L, Sahagian M. Diffusion of aqueous sugar solutions as affected by locust bean gum studied by NMR. J Food Sci, 1999, 64: 46–49

    CAS  Google Scholar 

  124. Hatakeyama T, Hatakeyama H. Glasser W G, Hatakeyama H, eds. In: Viscoelasticity and Biomaterials, ACS Symp, 1992, 329

  125. Hofmann K, Hatakeyama H. 1H NMR relaxation studies and lineshape analysis of aqueous sodium carboxymethylcellulose. Polymers, 1994, 35: 2749–2758

    CAS  Google Scholar 

  126. Ramakrishnan S, Gerardin C, Prud’homme R K. Syneresis of carrageenan gels: NMR and rheology. Soft Materials, 2004, 2: 145–153

    CAS  Google Scholar 

  127. Takigami S, Shimada M, Williams P A, Phillips G O. ESR study of the conformation transition of spin-labeled xanthan gum in aqueous solution. Int J Biol, Macromol, 1993, 15: 367–371

    CAS  Google Scholar 

  128. Jin Y, Zhang H B, Yin Y M, Nishinari K. Comparison of curdlan and its carboxymethylated derivative by means of rheology, DSC, and AFM. Carbohydr Res, 2006, 341: 90–99

    CAS  Google Scholar 

  129. Annable P, Williams P A, Nishinari K. Interaction in xanthan-glucomannan mixtures and the influence of electrolyte. Macromolecules, 1994, 27: 4204–4211

    CAS  Google Scholar 

  130. Vittadini E, Dickinson L C, Chinachoti P. NMR water mobility in xanthan and locust bean gum mixtures: possible explanation of microbial response. Carbohydr Polym, 2002, 49: 261–269

    CAS  Google Scholar 

  131. Coviello T, Burchard W. Criteria for the point of gelation in reversibly gelling systems according to dynamic light-scattering and oscillatory rheology. Macromolecules, 1992, 25: 1011–1012

    CAS  Google Scholar 

  132. Kanzawa Y, Koreeda A, Harada A, Harada T. Electron microscopy of the gel-forming ability of polysaccharide food additives. Agric Biol Chem, 1989, 53: 979–986

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Martin Lo.

Additional information

Dr. Y. Martin Lo, Associate Professor of Food Bioprocess Engineering and Extension Specialist of Food Processing Safety, is the Director of Graduate Program in Food Science at the University of Maryland. Serving as the Editor-in-Chief of the Journal of Food Processing and Preservation, the only ISI-ranked journal dedicated to publishing both fundamental and applied research relating to food processing and preservation, Dr. Lo is recognized by his extensive experiences in the development of novel food processing and preservation technologies. He has established active research programs in value-added applications of food and agriculture byproducts as well as development of whole-cell biosensors for food safety monitoring. Dr. Lo served as the President of the Chinese American Food Society and the Chair of Food Engineering Division in the Institute of Food Technologists (IFT). Dr. Lo was chosen as the 2007–2008 and 2008–2009 Distinguished Lecturer by IFT. Dr. Lo is also known for his efforts in building research-based extension programs. He serves as the Maryland Food Safety HACCP Coordinator for USDA FSIS and is a trainer for international workshops on Good Agriculture Practices (GAPs) while leading the Commercially Sterile Packaged Foods (CSPF) international training program for the Joint Institute of Food Safety and Applied Nutrition (JIFSAN).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soma, P.K., Williams, P.D. & Lo, Y.M. Advancements in non-starch polysaccharides research for frozen foods and microencapsulation of probiotics. Front. Chem. Eng. China 3, 413–426 (2009). https://doi.org/10.1007/s11705-009-0254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-009-0254-x

Keywords

Navigation