Skip to main content
Log in

Changes in structure and functional properties of whey proteins induced by high hydrostatic pressure: A review

  • Review Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

Abstract

High hydrostatic pressure (HHP) is an alternative technology to heat processing for food product modifications. It does not cause environmental pollution and eliminates the use of chemical additives in food products. This review covers the research conducted to understand the effect of HHP on structure and functional properties of whey proteins. In this paper, the mechanism underlying pressure-induced changes in β-lactoglobulin and α-lactabumin is also discussed and how they related to functional properties such as hydrophobicity, foam stability, and flavor-binding capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marshall K R. Developments in Dairy Chemistry. London: Elsevier Applied Science Publishers, 1982, 339–373

    Google Scholar 

  2. Morr C V, Ha E Y W. Whey protein concentrates and isolates: processing and functional properties. CRC Crit Rev Food Sci Nutr, 1993, 33: 431–476

    Article  CAS  Google Scholar 

  3. American Dairy Products Institute. Whey products: 1998 utilization and production trends. American Dairy Products Institute, Chicago, 1999

    Google Scholar 

  4. Yang S T, Silva E M. Novel products and new technologies for use of a familiar carbohydrate, milk lactose. J Dairy Sci, 1995, 78: 2541–2562

    CAS  Google Scholar 

  5. U.S. Diary Export Council. Product specifications. U.S. Dairy Export Council. Arlington, VA, USA, 1999

    Google Scholar 

  6. King L. Whey protein concentrates as ingredients. Food tech Europe, 1996, 124: 88–89

    Google Scholar 

  7. Coton G, Clark W S, Hopkin E. Trends in Whey Utilization. Btussels: International Dairy Federation, 1987, 135–144

    Google Scholar 

  8. Zhou P, Liu X M, Labuza T P. Moisture-induced aggregation of whey proteins in a protein/buffer model system. J Agric Food Chem, 2008, 56: 2048–2054

    Article  CAS  Google Scholar 

  9. Martin M F S, Barbosa-Cánovas G V, Swanson B G. Food processing by high hydrostatic pressure. CRC Crit Rev Food Sci Nutr, 2002, 42: 627–645

    Google Scholar 

  10. Knorr D. Hydrostatic pressure treatment of food: microbiology. In: Gould G W, ed. New Methods of Food Preservation. New York: Blackie Academic and Professional, 1995a, 159–172

    Google Scholar 

  11. Knorr D. High pressure effects on plant derived foods. In: Ledward D A, Johnson D E, Earnshaw R P, Hasting A P M, eds. High Pressure Processing of Foods. Nottingham: Nottingham University press, 1995b, 123–136

    Google Scholar 

  12. Cheftel J C. Effects of high hydrostatic pressure on food constituents: an overview. In: Balny C, Hayashi R, Heremans K, Masson P, eds. High Pressure and Biotechnology. Montrouge, France: John Libbey Eurotext, 1992, 195–204

    Google Scholar 

  13. Kadharmeston C. Thermal property and functionality of whey protein concentrate treated by heat or high hydrostatic. Dissertation for the Master Degree. Washington: Washington State University, 1998, 17–20

    Google Scholar 

  14. Palou E, Lopez-Malo A, Barbosa-Canovas G, Swanson B G. High-Pressure Treatment in Food Preservation. In: Rahman M S, Ed. Handbook of Food Preservation. New York: Marcel Dekker, 1993, 533–576

    Google Scholar 

  15. Hayashi R. Advances in high pressure processing technology in Japan. In: Gaonkar A G, ed. Food Processing: Recent Developments. London: Elsevier, 1995, 85–94

    Google Scholar 

  16. William A. New technologies in food preservation and processing: part II. Nutr Food Sci, 1994, 1: 16–22

    Google Scholar 

  17. Hoover D G. High-pressure pasteurization. Activities Report of the R & D Associates, 1997, 49: 294–296

    Google Scholar 

  18. Hayashi R, Balny C. Technique of quality control for Sudachi (Citrus sudachi Hort. Ex Shirai) juice by high pressure treatment. In: High Pressure Bioscience and Biotechnology. Amsterdam: Elsevier Science BV, 1996a, 387–390

    Google Scholar 

  19. Hayashi R, Balny C. High pressure inactivation of yeast cells in saline and strawberry jam at low temperatures. In: High Pressure Bioscience and Biotechnology. Amsterdam: Elsevier Science BV, 1996b, 423–428

    Google Scholar 

  20. Palou E, López-Malo A, Barbosa-Cánovas G V, Swanson B G. High-Pressure Treatment in Food Preservation. In: Handbook of Food Preservation. New York: Marcel Dekker, 1994, 533–576

    Google Scholar 

  21. Hashizume C, Kimura K, Hayashi R. Kinetic analysis of yeast inactivation by high pressure treatment at low temperatures. Biosci Biotech Biochem, 1996, 59: 1455–1503

    Article  Google Scholar 

  22. Smelt J, Rijike G. High pressure treatment as a tool for pasteurization of foods. In High Pressure and Biotechnology. Colloque INSERM, Institut Natl De LA Sante, Vol. 224, 1993, 361–373

    Google Scholar 

  23. Cheftel J C. High-pressure, microbial inactivation and food preservation. Int J Food Sci Tech, 1995, 1: 75–82

    Article  Google Scholar 

  24. Ledward D A. High pressure processing—the potential. In: Ledward D A, Johnson D E, Earnshaw R G, Hasting A P M, eds. High Pressure Processing of Foods. Nottingham: Nottingham University Press, 1995, 1–11

    Google Scholar 

  25. Lassalle M W, Li H, Yamada H, Akasaka H, Redfield C. Pressure-induced unfolding of the molten globule of all-Ala—lactalbumin. Protein Sci, 2003, 12: 66–72

    Article  CAS  Google Scholar 

  26. Wu J W, Wang Z X. New evidence for the denaturant binding model. Protein Sci, 1999, 8: 2090–2097

    Article  CAS  Google Scholar 

  27. AbouAiad T, Becker U, Biedenkap R, Brengelmann R, Elsebrock R, Hinz H J, Stockhausen M. Dielectric relaxation of aqueous solutions of ribonuclease A in the absence and presence of urea. Berichte Bunsen Gesellschaft Physi Chem. Chem Phys, 1997, 101: 1921–1927

    CAS  Google Scholar 

  28. Weber G, Drickamer H G. The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys, 1983, 16: 89–112

    Article  CAS  Google Scholar 

  29. Inoue K, Yamada H, Akasaka K, Herrmann C, Kremer W, Maurer T, Doeker R, Kalbitzer H R. Pressure-induced local unfolding of the Ras-binding domain of RalGEF. Nat Struct Biol, 2000, 7: 547–550

    Article  CAS  Google Scholar 

  30. Hummer G, Grade S, Garcia A E, Paulatis M P, Pratt L R. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc Natl Acad Sci USA, 1998, 95: 1552–1555

    Article  CAS  Google Scholar 

  31. Richards F M. Native collegan has a two-bonded structure. J Mol Biol, 1974, 83: 1–14

    Article  Google Scholar 

  32. Masson P, Cléry C. Pressure-induced molten globule states of proteins. In: Hayashi R, ed. High Pressure Bioscience and Biotechnology. London: Elservier Applied Science Publishers, 996, 117–126

  33. Sloan E D. Introduction. In: Sloan E D, ed. Clathrate Hydrates of Natural Gases. New York: Marcel Dekker, 1990, 1–11

    Google Scholar 

  34. Masson P. Pressure denaturation of proteins. In: Balny C, Hayashi R, Heremans K, Masson P, eds. High Pressure and Biotechnology. Colloque INSERM Vol 224. Montrouge, France: John Libbey Eurotect, 1992, 89–97

    Google Scholar 

  35. Johnson D E, Austin B A, Murphy R I. Effects of high hydrostatic pressure on milk. Michwissenchaft, 1992, 47: 760–771

    Google Scholar 

  36. Barciszewski J, Jurczak J, Porowski S, Specht T, Erdmann VA. The role of water structure in conformational changes of nucleic acids in ambient and high pressure conditions. Eur J Biochem, 2002, 260: 293–307

    Article  Google Scholar 

  37. Tedford L A, Kelly S M, Price N C, Schaschke C J. Combined effects of thermal and pressure processing on food protein structure. Trans IchemE, 1998, 76: 80–85

    CAS  Google Scholar 

  38. Pervaiz S, Brew K. Homology of β-lactoglobulin serum retinol-binding protein and protein HC. Science, 1985, 228: 335–337

    Article  CAS  Google Scholar 

  39. Eigel W N, Butler J E, Ernstrom C A, Farrell H M Jr, Harwalkar V R, Jenness R, Whitney R M. Nomenclature of proteins of cow’s milk: fifth revision. J Dairy Sci, 1984, 67: 1599–1631

    CAS  Google Scholar 

  40. Godovac-Zimmermann J, Braunitzer G. Modern aspects of the primary structure and function of β-lactoglobulin. Milchwissenschaft, 1987, 42: 294–298

    CAS  Google Scholar 

  41. Swaisgood H E. Chemistry of milk proteins. In: Fox P F, ed. Developments in Dairy Chemistry. Vol 1 Proteins. New York: Applied Science, 1982, 792–805

    Google Scholar 

  42. Swaisgood H E. Characteristics of edible fluids of animal origin: milk. In: Fennema O R, ed. Food Chemistry. New York: Marcel Dekker, 1985, 792–809

    Google Scholar 

  43. Kinsella J E. Milk proteins: physicochemical and functional properties. CRC Crit Rev Food Sci Nutr, 1984, 21: 197–213

    Article  CAS  Google Scholar 

  44. Frapin D, Dufour E, Haertle T. Probing the fatty acid binding site of β-lactoglobulin. J Protein Chem, 1993, 12: 443–449

    Article  CAS  Google Scholar 

  45. Yang J, Dunker A K, Powers J R, Clark S, Swanson B G. β-Lactoglobulin molten globule induced by high pressure. J Agric Food Chem, 2001, 49: 3236–3243

    Article  CAS  Google Scholar 

  46. Kataoka M, Kuwajima K, Tokunaga F, Goto Y. Structural characterization of the molten globule of α-lactalbumin by solution X-ray scattering. Protein Sci, 1997, 6: 442–430

    Google Scholar 

  47. Kamatari Y O, Ohji S, Konno T, Seki Y, Soda K, Kataoka M, Akasaka K. The compact and expanded denatured conformations of apomyoglobin in the methanol-water solvent. Protein Sci, 1999, 8: 873–882

    CAS  Google Scholar 

  48. Ramboarina S, Redfield C. Structural characterisation of the human α-lactalbumin molten globule at high temperature. J Mol Biol, 2003, 330: 1177–1188

    Article  CAS  Google Scholar 

  49. de Wit J N. Structure and functional behavior of whey proteins, Neth Milk Dairy J, 1981, 35: 47–57

    Google Scholar 

  50. Morr C V. Whey protein concentrates: an update. Food Technol, 1976, 30: 18–26

    CAS  Google Scholar 

  51. Rüegg M, Moor U, Blanc B. A calorimetric study of thermal denaturation of whey protein in simulated milk ultrafiltrate. J Dairy Res, 1977, 44: 509–521

    Article  Google Scholar 

  52. Johnson D E. High pressure effects on milk and meat. In: Ledward D A, Johnson D E, Earnshaw R G, Hasting A P M, eds. High Pressure Processing of Foods. Nottingham: Nottingham University Press, 1995, 99–107

    Google Scholar 

  53. Perez M D, Diaz de Villegas C, Sanchez L, Aranda P, Ena J M, Calvo M. Interacion of fatty acids with β-lactoglobulin and albumin from ruminant milk. J Biochem, 1989, 106: 1094–1097

    CAS  Google Scholar 

  54. Futterman S, Heller J. The enhancement of fluorescence and the decreased susceptibility to enzymatic oxidation of retinal complexed with bovine-serum albumin, β-lactoglobulin and retinal binding protein of human plasma. J Biol Chem, 1972, 247: 5168–5172

    CAS  Google Scholar 

  55. Magdassi S, Vinetsky Y, Relkin P. Formation and structural heat stability of α-lactoglobulin/surfactant complexes. Colloids and Surfaces B: Biointerfaces. 1996, 6: 353–362

    Article  CAS  Google Scholar 

  56. Guichard E, Langorieux S. Interactions between β-lactoglobulin and flavor compounds. Food Chem, 2000, 71: 301–308

    Article  CAS  Google Scholar 

  57. O’Neill T E, Kinsella J E. Binding of alkanone flavors to β-lactoglobulin: Effects of conformational and chemical modifications. J Agric Food Chem, 1987, 35: 770–774

    Article  Google Scholar 

  58. Dufour E, Haertlé T. Alcohol-induced changes of β-lactoglobulin-retinol-binding stoichiometry. Protein Eng, 1990, 4: 185–190

    Article  CAS  Google Scholar 

  59. Wishnia A, Pinder TWJ. Hydrophobic interactions in proteins. The alkane binding sites of β-lactoglobulin A and B. Biochem, 1966, 5: 1534–1542

    Article  CAS  Google Scholar 

  60. Sostamann K, Bernal B, Androit I, Guichard E. Flavor binding by β-lactoglobulin: different approaches. In: Kruse R, ed. Flavor perception, aroma evaluation, 5th Warburg aroma symposium. Eisenach, 1997, 425–434

  61. Reiners J, Nicklaus S, Guichard E. Interactions between β-lactoglobulin and flavor compounds of different chemical classes. Impact of the protein on the odor perception of vanillin and eugenol. LAIT, 2000, 80: 347–360

    Article  CAS  Google Scholar 

  62. Nakamura T, Sado H, Syukunobe Y. Production of low antigenic whey protein hydrolysates by enzymatic hydrolysis and denaturation with high pressure. Milchwissenschaft, 1993, 48: 141–145

    CAS  Google Scholar 

  63. Dumay E M, Kalichievski M T, Cheftel J C. High pressure unfolding and aggregation of β-lactoglobulin and baroprotective effects of sucrose. J Agric Food Chem, 1994, 42: 1602–1605

    Article  Google Scholar 

  64. Yang J, Powers J R, Clark S, Dunker A K, Swanson B G. Ligand and flavor binding functional properties of β-lactoglobulin in the molten globule state induced by high pressure. J Food Sci, 2003, 68: 444–452

    Article  CAS  Google Scholar 

  65. Kuwajima K. The molten globule state of α-lactalbumin. FASEB J, 1996, 10: 102–108

    CAS  Google Scholar 

  66. Kuwajima K, Mitani M, Sugai S. Characterization of the critical state in protein folding: effects of guanidine hydrochloride and specific Ca2+ binding on the folding kinetics of α-lactalbumin. J Mol Biol, 1989, 206: 547–561

    Article  CAS  Google Scholar 

  67. Ptitsyn O B. Molten globule and protein folding. Adv Protein Chem, 1995, 47: 83–229

    Article  CAS  Google Scholar 

  68. Dolgikh D A, Gilmanshin R I, Brazhnikov E V, Bychkova V E, Semisotnov G V, Venyaminov S Y, Ptitsyn O B. α-Lactalbumin: compact state with fluctuating tertiary structure. FEBS Letters, 1981, 136: 311–315

    Article  CAS  Google Scholar 

  69. Kronman M J, Cerankowski L, Holmes L G. Inter- and intramolecular interactions of α-lactalbumin. III. Spectral changes at acid pH. Biochem, 1965, 4: 518–525

    Article  CAS  Google Scholar 

  70. Kuwajima K, Nitta K, Yoneyama M, Sugai S. Three state denaturation of α-lactalbumin by guanidine hydrochloride. J Mol Biol, 1976, 106: 359–373

    Article  CAS  Google Scholar 

  71. Chang J Y, Bulychev A, Li L. A stabilized molten globule protein. FEBS Letters, 2000, 487: 298–300

    Article  CAS  Google Scholar 

  72. de Wit J N, Klarenbeek G. Effects of various heat treatments on structure and solubility of whey proteins. J Dairy Sci, 1984, 67: 2701–2710

    Article  Google Scholar 

  73. Jegouic M, Grinberg V Y, Guingant A, Haertle T. Baric oligomerization in α-lactalbumin/β-lactoglobulin mixtures. J Agric Food Chem, 1997, 45: 19–22

    Article  CAS  Google Scholar 

  74. Considinea T, Patela H A, Anemaa S G, Singh H, Creamer L K. Interactions of milk proteins during heat and high hydrostatic pressure treatments—A review. Innov Food Sci & Emerg, 2006, 8: 1–23

    Article  CAS  Google Scholar 

  75. Hayakawa I, Kajihara J, Morikawa K, Oda M, Fujio Y. Denaturation of bovine serum albumin (BSA) and ovalbumin by high pressure, heat and chemicals. J Food Sci, 1992, 57: 288–292

    Article  CAS  Google Scholar 

  76. Cheftel J C, Dumay E. Effects of high pressure on dairy proteins: a review. In: Hayashi R, Balny C, eds. High Pressure Bioscience and Biotechnology. Elsevier Science BV, 1996, 299–308

  77. Lopez-Fandino R, Carrascosa A V, Olano A. Effects of high pressure on whey protein denaturation and cheese-making properties of raw milk. Journal of Dairy Sci, 1996, 79: 929–936

    Article  CAS  Google Scholar 

  78. Famelart M H, Chapron L, Piot M, Brule G, Durier C. High pressure-induced gel formation of milk and whey concentrates. J Food Eng, 1998, 36: 149–164

    Article  Google Scholar 

  79. Galazka V B, Ledward D A, Dickinson E, Langley K R. High pressure effects on emulsifying behavior of whey protein concentrate. J Food Sci, 1995, 60: 1341–1343

    Article  CAS  Google Scholar 

  80. Ìbanoglu E, Karatas S. High pressure effect on foaming behavior of whey protein isolate. J Food Eng, 2001, 47: 31–36

    Article  Google Scholar 

  81. Liu X M, Powers J R, Swanson B G, Hill H, Clark S. Modification of whey protein concentrate hydrophobicity by high hydrostatic pressure. Innov Food Sci Emerg, 2005, 6: 310–317

    Article  CAS  Google Scholar 

  82. Liu X M, Powers J R, Swanson B G, Hill H, Clark S. High hydrostatic pressure affects flavor-binding properties of whey protein concentrate. J Food Sci, 2005, 70: 581–585

    Google Scholar 

  83. Lim S Y, Swanson B G, Clark S. High hydrostatic pressure modification of whey protein concentrate for improved functional properties. J Dairy Sci, 2008, 91: 1299–1307

    Article  CAS  Google Scholar 

  84. Padiernos C A, Lim S Y, Swanson B G, Ross C F, Clark S. High hydrostatic pressure modification of whey protein concentrate for use in low-fat whipping cream improves foaming properties. J Dairy Sci, 2009, 92: 3049–3056

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Ning, J. & Clark, S. Changes in structure and functional properties of whey proteins induced by high hydrostatic pressure: A review. Front. Chem. Eng. China 3, 436–442 (2009). https://doi.org/10.1007/s11705-009-0251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-009-0251-0

Keywords

Navigation