Skip to main content
Log in

Kinetic roughening transition and missing regime transition of melt crystallized polybutene-1 tetragonal phase: growth kinetics analysis

  • Research Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

Abstract

The morphology and lateral growth rate of isotactic polybutene-1 (it-PB1) have been investigated for crystallization from the melt over a wide range of crystallization temperatures from 50 to 110°C. The morphology of it-PB1 crystals is a rounded shape at crystallization temperatures lower than 85°C, while lamellar single crystals possess faceted morphology at higher crystallization temperatures. The kinetic roughening transition occurs around 85°C. The nucleation and growth mechanism for crystallization does not work below 85°C, since the growth face is rough. However, the growth rate shows the supercooling dependence derived from the nucleation and growth mechanism. The nucleation theory seems still to work even for rough surface growth. Possible mechanisms for the crystal growth of this polymer are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffman J D, Miller R L. Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer, 1997, 38: 3151–3212

    Article  CAS  Google Scholar 

  2. Point J J, Janimak J J. Frank and seto model revisited and a comment about a recent paper by Hoffman and Miller. Polymer, 1998, 39: 7123–7125

    Article  CAS  Google Scholar 

  3. Point J J, Colet M C, Dosiere M. Experimental criterion for the crystallization regime in polymer crystals grown from dilute solution: possible limitation due to fractionation. J Polym Sci Polym Phys Ed, 1986, 24: 357–358

    Article  CAS  Google Scholar 

  4. Saito Y. Statistical Physics of Crystal Growth. Singapore: World Scientific Publishing Co. Pte. Ltd., 1996, 56–97

    Google Scholar 

  5. Miyamoto Y, Tanzawa Y, Miyaji H, Kiho H. Concentration dependence of lamellar thickness of isotactic polystyrene at high supercoolings. J Phys Soc Jpn, 1989, 58: 1879–1882

    Article  CAS  Google Scholar 

  6. Tanzawa Y. Growth rate and morphology of isotactic polystyrene crystals in solution at high supercoolings. Polymer, 1992, 33: 2659–2665

    Article  CAS  Google Scholar 

  7. Yamashita M, Miyaji H, Izumi K, Hoshino A. Crystal growth of isotactic poly(butane-1) in the Melt. I. kinetic roughening. Polym J, 2004, 36: 226–237

    Article  CAS  Google Scholar 

  8. Yamashita M, Hoshino A, Kato M. Isotactic poly(butene-1) trigonal crystal growth in the Melt. J Polym Sci Polym Phys Ed, 2007, 45: 684–697

    Article  CAS  Google Scholar 

  9. Yamashita M, Kato M. Lamellar crystal thickness transition of melt crystallized isotactic polybutene-1 observed by small-angle X-ray scattering. J Appl Cryst, 2007, 40: s650–655

    Article  CAS  Google Scholar 

  10. Yamashita M, Kato M. Surface free energies of isotactic polybutene-1 tetragonal and trigonal crystals: the role of conformational entropy of side chains. J Appl Cryst, 2007, 40: s558–563

    Article  CAS  Google Scholar 

  11. Yamashita M, Ueno S. Direct melt crystal growth of isotactic polybutene-1 trigonal phase. Cryst Res Tech, 2007, 42: 1222–1227

    Article  CAS  Google Scholar 

  12. Yamashita M, Takahashi T. The effect of side chain entropy on polymer crystal surfaces-surface free energies of isotactic polybutene-1 tetragonal and trigonal crystals. Kobunshi Ronbunshu, 2008, 65: 218–227

    Article  CAS  Google Scholar 

  13. Yamashita M. Direct crystal growth of isotactic polybutene-1 trigonal phase in the melt: in-situ observation. J Cryst Gro, 2008, 310: 1739–1743

    Article  CAS  Google Scholar 

  14. Yamashita M, Takahashi T. Melt crystallization of isotactic polybutene-1 trigonal form: the effect of side chain entropy on crystal growth kinetics. Polym J, 2008, 40: 996–1004

    Article  CAS  Google Scholar 

  15. Yamashita M, Takahashi T. Kinetic roughening transition of isotactic polybutene-1 tetragonal crystals: disagreement between morphology and growth kinetics. Polym J, 2008, 40: 1025–1030

    Article  CAS  Google Scholar 

  16. Yamashita M, Takahashi T. Directional entropy of chain folding detected in chain folding free energies? Crystal thickness transition of isotactic polybutene-1 tetragonal phase. Polym J, 2008, 40: 1010–1016

    Article  CAS  Google Scholar 

  17. Natta G, Corradini P, Bassi I W. Crystal structure of isotactic poly (1-butene). Nuovo Cimento Suppl, 1960, 15: 52–67

    Article  CAS  Google Scholar 

  18. Tashiro K, Saiani A, Miyashita S, Chatani Y, Tadokoro H. Crystal structure of unstable Form II of isotactic polybutene-1: structure analysis by a combination of X-Ray imaging plate and computer simulation technique. Polym Prepr Jpn, 1998, 47: 3869

    Google Scholar 

  19. Miller R L. Polymer Handbook 4th ed. Brandrup J, Immergut E H, Grulke E A, Ed. New York: Interscience Publishers, 1999, VI/1–70

    Google Scholar 

  20. Hoffman J D, Davis G T, Lauritzen J I Jr. Treatise on Solid State Chemistry. Hannay N B, Ed. New York: Plenum, 1976: 497–580

    Google Scholar 

  21. Starkweather H W Jr, Jones G A. The heat of fusion of polybutene-1. J Polym Sci, Pt B, Polym Phys, 1986, 24: 1509–1514

    Article  CAS  Google Scholar 

  22. Leute U, Dollhopf W. High pressure dilatometry on polybutene-1. Colloid Polym Sci, 1983, 261: 299–305

    Article  CAS  Google Scholar 

  23. Turner-Jones A. Cocrystallization in copolymers of -ole.ns II-butene-1 copolymers and polybutene type II/I crystal phase transition. Polymer, 1976, 7: 23–59

    Article  Google Scholar 

  24. Turner-Jones A. Poly-l-butylene Type II crystalline form. J Polym Sci Pt B: Polym Lett, 1963, 1: 455–456

    Article  CAS  Google Scholar 

  25. Sadler D M. Roughness of growth faces of polymer crystals: evidence from morphology and implications for growth mechanisms and types of folding. Polymer 1983, 24: 1401–1409

    Article  CAS  Google Scholar 

  26. Toda A. Kinetic barrier of pinning in polymer crystallization: rate equation approach. J Chem Phys, 2003, 118: 8446–8455

    Article  CAS  Google Scholar 

  27. Jitka H, Jaroslav S, Pavel K. Refractive index increments of polyolefins. J Appl Polym Sci, 1983, 28: 3873–3874

    Article  Google Scholar 

  28. Icenoge R D. Temperature-dependent melt crystallization kinetics of poly(butene-1): a new approach to the characterization of the crystallization kinetics of semicrystalline polymers. J Polym Sci Polym Phys Ed, 1985, 23: 1369–1391

    Article  Google Scholar 

  29. Zhai X, Wang W, Ma Z, Wen X, Yuan F, Tang X, He B. Spontaneous and inductive thickenings of lamellar crystal monolayers of low molecular weight PEO fractions on surface of solid substrates. Macromolecules 2005, 38: 1717–1722

    Article  CAS  Google Scholar 

  30. Tang X, Wen X, Zhai X, Xia N, Wang W, Wegner G, Wu Z. Thickening process and kinetics of lamellar crystals of a low molecular weight poly(ethylene oxide). Macromolecules 2007, 40: 4386–4388

    Article  CAS  Google Scholar 

  31. Zhai X, Wang W, Zhang G, He B. Crystal pattern formation and transitions of PEO monolayers on solid substrates from nonequilibrium to near equilibrium. Macromolecules, 2006, 39: 324–329

    Article  CAS  Google Scholar 

  32. Ma Z, Zhang G, Zhai X, Jin L, Tang X, Yang M, Zheng P, Wang W. Fractal crystal growth of poly(ethylene oxide) crystals from its amorphous monolayers. Polymer, 2008, 49: 1629–1634

    Article  CAS  Google Scholar 

  33. Fu Q, Heck B, Strobl G, Thomann Y. A Temperature- and molar mass-dependent change in the crystallization mechanism of poly(1-butene): transition from chain-folded to chain-extended crystallization? Macromolecules, 2001, 34: 2502–2511

    Article  CAS  Google Scholar 

  34. Choy C L, Ong E L, Chen F C. Thermal diffusivity and conductivity of crystalline polymers. J Appl Polym Sci, 2003, 26: 2325–2335

    Article  Google Scholar 

  35. Chang S S. Specific heat of hydrocarbon polymers. Polym Prep, 1987, 28: 244–245

    CAS  Google Scholar 

  36. Taguchi K, Miyaji H, Izumi K, Hoshino A, Miyamoto Y, Kokawa R. Growth shape of isotactic polystyrene crystals in thin films. Polymer, 2001, 42: 7443–7447

    Article  CAS  Google Scholar 

  37. Armisted J P, Hoffman J D. Direct evidence of regimes I, II, and III in linear polyethylene fractions as revealed by spherulite growth rates. Macromolecules, 2002, 35: 3895–3913

    Article  Google Scholar 

  38. Hoffman J D. Regime III crystallization in melt-crystallized polymers: the variable cluster model of chain folding. Polymer, 1983, 24: 3–26

    Article  CAS  Google Scholar 

  39. Lorenzo M L D. Determination of spherulite growth rates of poly (L-lactic acid) using combined isothermal and non-isothermal procedures. Polymer, 2001, 42: 9441–9446

    Article  Google Scholar 

  40. Sadler D M, Gilmer G H. A model for chain folding in polymer crystals: rough growth faces are consistent with the observed growth rates. Polymer, 1984, 25: 1446–1452

    Article  CAS  Google Scholar 

  41. Chernov A A. Growth mechanisms in modern crystallography III. New York: Springer, 1984, 104–158

    Google Scholar 

  42. Miller R L. Polymer Handbook 4th ed. Brandrup J, Immergut E H, Grulke E A, Ed. New York: Interscience Publishers, 1999, VIII/48–49

    Google Scholar 

  43. Miyaji H, Miyamoto Y, Taguchi K, Hoshino A, Yamashita M, Sawanobori O, Toda A. Morphology, growth rate, and lamellar thickness of polymer crystals. J Macromol Sci, 2003, B42: 867–874

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoi Yamashita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, M. Kinetic roughening transition and missing regime transition of melt crystallized polybutene-1 tetragonal phase: growth kinetics analysis. Front. Chem. Eng. China 3, 125–134 (2009). https://doi.org/10.1007/s11705-009-0001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-009-0001-3

Keywords

Navigation