Skip to main content
Log in

Construction of PS/PNIPAM core-shell particles and hollow spheres by using hydrophobic interaction and thermosensitive phase separation

  • Research Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

Abstract

Abstract This paper reports an easy and effective way to fabricate polystyrene/poly (N-isopropylacrylamide) (PS/ PNIPAM) core-shell particles and PNIPAM hollow spheres. The main point of the method is to take advantage of the hydrophobic interaction between initiator and PS particles. The hydrophobic azodiisobutyronitriles automatically concentrate around the PS particles and initiate polymerization of N-isopropylacrylamide (NIPAM) and the crosslinkermethylene bisacrylamide (MBA), which dissolve in the aqueous phase, at the surface of the PS nanoparticles. Then, PNIPAM adheres to the PS particles to form a coreshell structure as a result of their hydrophobic interaction. This interaction is due to the unique property of PNIPAM, namely, its ability to transition from hydrophilic to hydrophobic when the temperature rises to 32°C. Furthermore, the hollow PNIPAM spheres were obtained by etching the PS core with chloroform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeong B, Bae Y H, Lee D S, Kim S W. Biodegradable block copolymers as injectable drug-delivery systems. Nature, 1997, 388: 860–862

    Article  CAS  Google Scholar 

  2. Kurisawa M, Terano M, Yui N. Doublestimuli-responsive degradable hydrogels for drug delivery: interpenetrating polymer networks composed of oligopeptide-terminated poly (ethylene glycol) and dextran. Macromol Rapid Commun, 1995, 16: 663–666

    Article  CAS  Google Scholar 

  3. Brøndsted H, Kopecek J. Drug delivery to the colon: in vitro and in vivo degradation. Pharm Res, 1992, 9: 1540–1545

    Article  Google Scholar 

  4. Miyata T, Asami N, Uragami T. Preparation of an antigensensitive hydrogel using antigen-antibody bindings. Macromolecules, 1999, 32: 2082–2084

    Article  CAS  Google Scholar 

  5. Holtz J H, Asher S A, Munro C H, Asher S A. Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials. Anal Chem, 1998, 70: 780–791

    Article  CAS  Google Scholar 

  6. Holtz J H, Asher S A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature, 1997, 389: 829–832

    Article  CAS  Google Scholar 

  7. Ouali L, Stoll S, Pefferkorn E, Elaissari A, Lanet V, Pichot C, Mandrand B. Coagulation of antibody-sensitized latexes in the presence of antigen. Polym Adv Technol, 1995, 6: 541–546

    Article  CAS  Google Scholar 

  8. Heskins M, Guillet J E. Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem, 1968, 8: 1441–1455

    Article  Google Scholar 

  9. Yan L, Yu M, Markus D, Matthias B. Thermosensitive coreshell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew Chem Int Ed, 2006, 45: 813–816

    Article  Google Scholar 

  10. Chen C W, Chen M Q, Takeshi S, Mitsuru A. In-site formation of silver nanoparticles on poly(N-isopropylacrylamide)-coated polystyrene microspheres. Adv Mater, 1998, 10(14): 1122–1126

    Article  CAS  Google Scholar 

  11. Sun Q H, Deng Y L. Encapsulation of polystyrene latex with temperature-responsive poly(N-isopropylacrylamide) via a self-assembling approach and the adsorption behaviors therein. Langmuir, 2005, 21: 5812–5816

    Article  CAS  Google Scholar 

  12. Dingenouts N, Seelenmeyer S, Deike I, Rosenfeldt S, Ballau M, Lindner P, Narayanan T. Analysis of thermosensitive coreshell colloids by small-angle neutron scattering including contrast variation. Phys Chem Chem Phys, 2001, 3: 1169–1174

    Article  CAS  Google Scholar 

  13. Cheng Y, Jayachandran N K, Donald E B, Fan J, Chi W. Laser-light-scattering study of internal motions of polymer chains grafted on spherical latex particles. J Phys Chem B, 2004, 108: 18479–1848

    Article  Google Scholar 

  14. Thomas H, Charles D D, Wolfgang E, Charles D D, Wolfgang E, Karl K. PNIPAM-co-polystyrene core-shell microgels: structure, swelling behavior, and crystallization. Langmuir, 2004, 20: 4330–4335

    Article  Google Scholar 

  15. Zha L S, Zhang Y, Yang W L, Fu S. Monodisperse temperature-sensitive microcontainers. Adv Mater, 2002, 14: 1090–1092

    Article  CAS  Google Scholar 

  16. Zou D Z, Sun L Q, Aklonis J J. Model filled polymers. VIII: Synthesis of crosslinked polymeric beads by seed polymerization. J Polym Sci Part A: Polymer Chemistry, 1992, 30: 1463–1475

    Article  CAS  Google Scholar 

  17. Kim S H, Son W K, Kim Y J, Kang E, Kim D. Synthesis of polystyrene/poly(butyl acrylate) core-shell latex and its surface morphology. J Appl Polym Sci, 2003, 88: 595–601

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Xu.

Additional information

__________

Translated from Journal of Nanjing University (Natural Sciences), 2007, 43(5): 483–488 [译自: 南京大学学报(自然科学)]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, D., Wang, F., Gao, C. et al. Construction of PS/PNIPAM core-shell particles and hollow spheres by using hydrophobic interaction and thermosensitive phase separation. Front. Chem. Eng. China 2, 253–256 (2008). https://doi.org/10.1007/s11705-008-0049-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-008-0049-5

Keywords

Navigation