Skip to main content
Log in

Monte Carlo simulation of the PEMFC catalyst layer

  • Research Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

Abstract

The performance of the polymer electrolyte membrane fuel cell (PEMFC) is greatly controlled by the structure of the catalyst layer. Low catalyst utilization is still a significant obstacle to the commercialization of the PEMFC. In order to get a fundamental understanding of the electrode structure and to find the limiting factor in the low catalyst utilization, it is necessary to develop the mechanical model on the effect of catalyst layer structure on the catalyst utilization and the performance of the PEMFC. In this work, the structure of the catalyst layer is studied based on the lattice model with the Monte Carlo simulation. The model can predict the effects of some catalyst layer components, such as Pt/C catalyst, electrolyte and gas pores, on the utilization of the catalyst and the cell performance. The simulation result shows that the aggregation of conduction grains can greatly affect the degree of catalyst utilization. The better the dispersion of the conduction grains, the larger the total effective area of the catalyst is. To achieve higher utilization, catalyst layer components must be distributed by means of engineered design, which can prevent aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Larminie J, Dicks A. Fuel Cell Systems Explained. New York: John Wiley, 2000, 50–60

    Google Scholar 

  2. de Levie R. Advances in Electrochemistry & Electrochemical Engineering. New York: Interscience, 1967, 95–96

    Google Scholar 

  3. Keddam M, Rakotomavo C, Takenouti H. Impedance of a porous electrode with an axial gradient of concentration. J Appl Electrochem, 1984, 14(4): 437–448

    Article  CAS  Google Scholar 

  4. Cachet C, Wiart R. Couple axial gradients of potential and concentration in a cylindrical pore electrode: an impedance model. J Electroanal Chem, 1985, 195(1): 21–37

    Article  CAS  Google Scholar 

  5. Bernardi D M, Verbrugge M W. A mathematical model of the solid-polymer-electrolyte fuel cell. J Electrochem Soc, 1992, 139(9): 2477–2491

    Article  CAS  Google Scholar 

  6. Springer T E, Wilson M S, Gottesfeld S. Modeling and experimental diagnostics in polymer electrolyte fuel cells. J Electrochem Soc, 1993, 140(12): 3513–3526

    Article  CAS  Google Scholar 

  7. Perry M L, Newman J, Cairns E J. Mass transport in gas-diffusion electrodes: A diagnostic tool for fuel-cell cathodes. J Electrochem Soc, 1998, 145(1): 5–15

    Article  CAS  Google Scholar 

  8. Eikerling M, Kornyshev A A. Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells. J Electroanal Chem, 1998, 453(1–2): 89–106

    Article  CAS  Google Scholar 

  9. Eikerling M, Kornyshev A A. Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells. J Electroanal Chem, 1999, 475(2): 107–123

    Article  CAS  Google Scholar 

  10. Broka K, Ekdunge P. Modelling the PEM fuel cell cathode. J Appl Electrochem, 1997, 27(3): 281–289

    Article  CAS  Google Scholar 

  11. Gloaguen F, Durand R. Simulations of PEFC cathodes: An effectiveness factor approach. J Appl Electrochem, 1997, 27(9): 1029–1035

    Article  CAS  Google Scholar 

  12. Iczkowski R P, Cutlip M B. Voltage losses in fuel cell cathodes. J Electrochem Soc, 1980, 127(7): 1433–1440

    Article  CAS  Google Scholar 

  13. Wang Q, Eikerling M, Song D, Liu Z. Structure and performance of different types of agglomerates in cathode catalyst layers of PEM fuel cells. J Electroanal Chem, 2004, 573(1): 61–69

    Article  CAS  Google Scholar 

  14. Farhat Z N. Modeling of catalyst layer microstructural refinement and catalyst utilization in a PEM fuel cell. J Power Sources, 2004, 138(1–2): 68–78

    Article  CAS  Google Scholar 

  15. Amphlett J C, Baumert R M, Harris T J, Mann R F, Peppley B A, Roberge P R. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. J Electrochem Soc, 1995, 142(1): 1–8

    Article  CAS  Google Scholar 

  16. Kulikovesky A A. Quasi three-dimensional modelling of the PEM fuel cell: Comparison of the catalyst layers performance. Fuel Cell, 2002, 1(2): 162–169

    Google Scholar 

  17. Amphlett J C, Baumert R M, Mann R F, Peppley B A, Roberge P R, Harris T J. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. J Electrochem Soc, 1995, 142(1): 9–15

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Yuxin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Cao, P. & Wang, Y. Monte Carlo simulation of the PEMFC catalyst layer. Front. Chem. Eng. China 1, 146–150 (2007). https://doi.org/10.1007/s11705-007-0027-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-007-0027-3

Keywords

Navigation