Skip to main content
Log in

Antimicrobial, radical scavenging, and dye degradation potential of nontoxic biogenic silver nanoparticles using Cassia fistula pods

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Synthesis of metallic nanoparticles via green approach holds great potential in diverse fields of biotechnology and medicine with special mention to silver nanoparticles (AgNPs) which undoubtedly display antimicrobial, radical scavenging, and dye degradation properties. Currently, there is a need to explore more cost-effective and efficient methods to synthesize AgNPs. In this study, we have synthesized biogenic AgNPs using an aqueous extract of a flowering plant of the legume family, Fabaceae, subfamily Caesalpiniaceae, Cassia fistula, which is also well known for its medicinal values. Spectroscopically and physicochemically characterized AgNPs were evaluated for their cytocompatibility, antimicrobial effects, antioxidant and catalytic activity to establish their potential for various biomedical applications. DLS studies revealed their size ~ 237 nm with the surface charge of ~ − 30 mV. The results of the zone of inhibition and MIC assays showed the superiority of the activity of these particles over the pod extract. Catalytic reduction of toxic p-nitrophenol to benign p-aminophenol as well as degradation of hazardous industrial dyes (methyl orange and methylene blue) advocated their potential as environmental toxicant eradicators. Besides, these biogenic AgNPs displayed profound antibiofilm effects in static microtiter plates. Altogether, the results of various bioassays using these biogenic nanoparticles demonstrate their immense potential as antimicrobial, antioxidant, and antibiofilm agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the CSIR project (OLP1144). IS thanks DST for awarding DST-INSPIRE fellowship for carrying out this work. The authors also wish to thank Ms. R. Purohit for her valuable support during experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, I., Gupta, S., Gautam, H.K. et al. Antimicrobial, radical scavenging, and dye degradation potential of nontoxic biogenic silver nanoparticles using Cassia fistula pods. Chem. Pap. 75, 979–991 (2021). https://doi.org/10.1007/s11696-020-01355-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-020-01355-3

Keywords

Navigation