Skip to main content

Advertisement

Log in

Changes in Bone Mineral Density After Weight Loss Due to Metabolic Surgery or Lifestyle Intervention in Obese Patients

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Purpose

Metabolic surgery and lifestyle intervention are two common methods used to treat obesity, but the effects of weight loss on bone mineral density (BMD) remain controversial. Our aim was to evaluate changes in BMD of the total hip, femoral neck, and lumbar spine after weight loss caused by metabolic surgery or lifestyle intervention.

Materials and Methods

We searched PubMed, Web of Science, and the Cochrane Library to identify relevant studies published before 5 August 2020. The primary outcomes, including the BMD of the total hip, femoral neck, and lumbar spine before and 12 months after metabolic surgery or lifestyle intervention, were extracted.

Results

A total of 19 studies with 1095 participants with obesity were included. Among them, 603 participants with obesity accepted metabolic surgery, while 492 accepted lifestyle intervention. At 12 months after weight loss, the BMD of the total hip decreased significantly in obese patients (mean difference [MD] = 0.06 g/cm2; 95% confidence interval [CI] 0.03 to 0.08; I2 = 67%; P < 0.001), while the BMD of the lumbar spine did not significantly change (P > 0.05). In the subgroup analysis, the BMD of the femoral neck decreased significantly at 12 months in obese patients who underwent metabolic surgery (MD = 0.08 g/cm2; 95% CI 0.04 to 0.13; I2 = 84%; P < 0.001), while it did not significantly change in obese patients who underwent lifestyle treatment (P > 0.05).

Conclusion

Regardless of whether the patients underwent metabolic surgery or lifestyle treatment, the BMD of the total hip significantly decreased in obese patients after weight loss. Different methods used to lose weight may have different effects on the BMD of the femoral neck. Prospective studies, preferably randomized controlled trials (RCTs), are still required to investigate whether the effects of the two treatments on bone metabolism are truly different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. NCD-RisC NRFC. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet. 2016;387:1377–96.

    Article  Google Scholar 

  2. Ryan D, Heaner M. Guidelines (2013) for managing overweight and obesity in adults. Preface to the full report. Obesity (Silver Spring) 2014;22 Suppl 2:S1-S3

  3. Muller-Stich BP, Senft JD, Warschkow R, et al. Surgical versus medical treatment of type 2 diabetes mellitus in nonseverely obese patients: a systematic review and meta-analysis. Ann Surg. 2015;261:421–9.

    Article  PubMed  Google Scholar 

  4. Rubino F, Nathan DM, Eckel RH, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Diabetes Care. 2016;39:861–77.

    Article  CAS  PubMed  Google Scholar 

  5. Nguyen T, Sambrook P, Kelly P, et al. Prediction of osteoporotic fractures by postural instability and bone density. BMJ. 1993;307:1111–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grethen E, Hill KM, Jones R, et al. Serum leptin, parathyroid hormone, 1,25-dihydroxyvitamin D, fibroblast growth factor 23, bone alkaline phosphatase, and sclerostin relationships in obesity. J Clin Endocrinol Metab. 2012;97:1655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang S, Shen X. Association and relative importance of multiple obesity measures with bone mineral density: the National Health and Nutrition Examination Survey 2005-2006. Arch Osteoporos. 2015;10:14.

    Article  PubMed  Google Scholar 

  8. Zhu K, Hunter M, James A, et al. Associations between body mass index, lean and fat body mass and bone mineral density in middle-aged Australians: the Busselton Healthy Ageing Study. Bone. 2015;74:146–52.

    Article  PubMed  Google Scholar 

  9. Compston JE, Watts NB, Chapurlat R, et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med. 2011;124:1043–50.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ko B, Myung SK, Cho K, et al. Relationship between bariatric surgery and bone mineral density: a meta-analysis. Obes Surg. 2016;26:1414–21.

    Article  PubMed  Google Scholar 

  11. Adamczyk P, Buzga M, Holeczy P, et al. Bone mineral density and body composition after laparoscopic sleeve gastrectomy in men: a short-term longitudinal study. Int J Surg. 2015;23:101–7.

    Article  PubMed  Google Scholar 

  12. Zibellini J, Seimon RV, Lee CM, et al. Does diet-induced weight loss Lead to bone loss in overweight or obese adults? A systematic review and meta-analysis of clinical trials. J Bone Miner Res. 2015;30:2168–78.

    Article  CAS  PubMed  Google Scholar 

  13. Hinton PS, Rector RS, Donnelly JE, et al. Total body bone mineral content and density during weight loss and maintenance on a low- or recommended-dairy weight-maintenance diet in obese men and women. Eur J Clin Nutr. 2010;64:392–9.

    Article  CAS  PubMed  Google Scholar 

  14. Ruiz-Tovar J, Oller I, Priego P, et al. Short- and mid-term changes in bone mineral density after laparoscopic sleeve gastrectomy. Obes Surg. 2013;23:861–6.

    Article  PubMed  Google Scholar 

  15. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009;151:W65–94.

    Article  PubMed  Google Scholar 

  16. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.

    Article  PubMed  Google Scholar 

  18. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Guerrero-Perez F, Casajoana A, Gomez-Vaquero C, et al. Changes in bone mineral density in patients with type 2 diabetes after different bariatric surgery procedures and the role of gastrointestinal hormones. Obes Surg. 2020;30:180–8.

    Article  PubMed  Google Scholar 

  20. Luhrs AR, Davalos G, Lerebours R, et al. Determining changes in bone metabolism after bariatric surgery in postmenopausal women. Surg Endosc. 2020;34:1754–60.

    Article  PubMed  Google Scholar 

  21. Sukumar D, Ambia-Sobhan H, Zurfluh R, et al. Areal and volumetric bone mineral density and geometry at two levels of protein intake during caloric restriction: a randomized, controlled trial. J Bone Miner Res. 2011;26:1339–48.

    Article  CAS  PubMed  Google Scholar 

  22. Seimon RV, Wild-Taylor AL, Keating SE, et al. Effect of weight loss via severe vs moderate energy restriction on lean mass and body composition among postmenopausal women with obesity: the TEMPO diet randomized clinical trial. JAMA Netw Open. 2019;2:e1913733.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Foster GD, Wyatt HR, Hill JO, et al. Weight and metabolic outcomes after 2 years on a low-carbohydrate versus low-fat diet: a randomized trial. Ann Intern Med. 2010;153:147–57.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Villareal DT, Chode S, Parimi N, et al. Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med. 2011;364:1218–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carrasco F, Basfi-Fer K, Rojas P, et al. Calcium absorption may be affected after either sleeve gastrectomy or Roux-en-Y gastric bypass in premenopausal women: a 2-y prospective study. Am J Clin Nutr. 2018;108:24–32.

    Article  PubMed  Google Scholar 

  26. Hsin MC, Huang CK, Tai CM, et al. A case-matched study of the differences in bone mineral density 1 year after 3 different bariatric procedures. Surg Obes Relat Dis. 2015;11:181–5.

    Article  PubMed  Google Scholar 

  27. Tan HC, Tan MZ, Tham KW, et al. One year changes in QCT and DXA bone densities following bariatric surgery in a multiethnic Asian cohort. Osteoporos Sarcopenia. 2015;1:115–20.

    Article  Google Scholar 

  28. Blom-Hogestol IK, Mala T, Kristinsson JA, et al. Changes in bone quality after Roux-en-Y gastric bypass: a prospective cohort study in subjects with and without type 2 diabetes. Bone. 2020;130:115069.

    Article  CAS  PubMed  Google Scholar 

  29. Guerrero-Pérez F, Casajoana A, Gómez-Vaquero C, et al. Long-term effects in bone mineral density after different bariatric procedures in patients with type 2 diabetes: outcomes of a randomized clinical trial. J Clin Med. 2020;9:1830.

    Article  PubMed Central  CAS  Google Scholar 

  30. Frederiksen KD, Hanson S, Hansen S, et al. Bone structural changes and estimated strength after gastric bypass surgery evaluated by HR-pQCT. Calcif Tissue Int. 2016;98:253–62.

    Article  CAS  PubMed  Google Scholar 

  31. Luger M, Kruschitz R, Winzer E, et al. Changes in bone mineral density following weight loss induced by one-anastomosis gastric bypass in patients with vitamin D supplementation. Obes Surg. 2018;28:3454–65.

    Article  PubMed  Google Scholar 

  32. Casagrande DS, Repetto G, Mottin CC, et al. Changes in bone mineral density in women following 1-year gastric bypass surgery. Obes Surg. 2012;22:1287–92.

    Article  PubMed  Google Scholar 

  33. Raoof M, Näslund I, Rask E, et al. Effect of gastric bypass on bone mineral density, parathyroid hormone and vitamin D: 5 years follow-up. Obes Surg. 2016;26:1141–5.

    Article  PubMed  Google Scholar 

  34. Obinwanne KM, Riess KP, Kallies KJ, et al. Effects of laparoscopic Roux-en-Y gastric bypass on bone mineral density and markers of bone turnover. Surg Obes Relat Dis. 2014;10:1056–62.

    Article  PubMed  Google Scholar 

  35. Geoffroy M, Charlot-Lambrecht I, Chrusciel J, et al. Impact of bariatric surgery on bone mineral density: observational study of 110 patients followed up in a specialized center for the treatment of obesity in France. Obes Surg. 2019;29:1765–72.

    Article  PubMed  Google Scholar 

  36. Giusti V, Gasteyger C, Suter M, et al. Gastric banding induces negative bone remodelling in the absence of secondary hyperparathyroidism: potential role of serum C telopeptides for follow-up. Int J Obes. 2005;29:1429–35.

    Article  CAS  Google Scholar 

  37. Arnold M, Pandeya N, Byrnes G, et al. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 2015;16:36–46.

    Article  PubMed  Google Scholar 

  38. Li S, Xiao J, Ji L, et al. BMI and waist circumference are associated with impaired glucose metabolism and type 2 diabetes in normal weight Chinese adults. J Diabetes Complicat. 2014;28:470–6.

    Article  Google Scholar 

  39. Ablett AD, Boyle BR, Avenell A. Fractures in adults after weight loss from bariatric surgery and weight management programs for obesity: systematic review and meta-analysis. Obes Surg. 2019;29:1327–42.

    Article  PubMed  Google Scholar 

  40. Yu EW, Kim SC, Sturgeon DJ, et al. Fracture risk after Roux-en-Y gastric bypass vs adjustable gastric banding among Medicare beneficiaries. JAMA Surg. 2019;154:746–53.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Johansson H, Kanis JA, Oden A, et al. A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res. 2014;29:223–33.

    Article  PubMed  Google Scholar 

  42. Masud T, Langley S, Wiltshire P, et al. Effect of spinal osteophytosis on bone mineral density measurements in vertebral osteoporosis. BMJ. 1993;307:172–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Johnell O, Kanis JA, Oden A, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20:1185–94.

    Article  PubMed  Google Scholar 

  44. Lang T, LeBlanc A, Evans H, et al. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19:1006–12.

    Article  PubMed  Google Scholar 

  45. Kazakia GJ, Tjong W, Nirody JA, et al. The influence of disuse on bone microstructure and mechanics assessed by HR-pQCT. Bone. 2014;63:132–40.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li X, Zhang Y, Kang H, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280:19883–7.

    Article  CAS  PubMed  Google Scholar 

  47. Luo XH, Guo LJ, Xie H, et al. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Res. 2006;21:1648–56.

    Article  CAS  PubMed  Google Scholar 

  48. Lenchik L, Register TC, Hsu FC, et al. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone. 2003;33:646–51.

    Article  CAS  PubMed  Google Scholar 

  49. Blain H, Vuillemin A, Guillemin F, et al. Serum leptin level is a predictor of bone mineral density in postmenopausal women. J Clin Endocrinol Metab. 2002;87:1030–5.

    Article  CAS  PubMed  Google Scholar 

  50. Ma W, Huang T, Zheng Y, et al. Weight-loss diets, adiponectin, and changes in cardiometabolic risk in the 2-year POUNDS lost trial. J Clin Endocrinol Metab. 2016;101:2415–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abbenhardt C, McTiernan A, Alfano CM, et al. Effects of individual and combined dietary weight loss and exercise interventions in postmenopausal women on adiponectin and leptin levels. J Intern Med. 2013;274:163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cifuentes M, Riedt CS, Brolin RE, et al. Weight loss and calcium intake influence calcium absorption in overweight postmenopausal women. Am J Clin Nutr. 2004;80:123–30.

    Article  CAS  PubMed  Google Scholar 

  53. Shapses SA, Sukumar D, Schneider SH, et al. Vitamin D supplementation and calcium absorption during caloric restriction: a randomized double-blind trial. Am J Clin Nutr. 2013;97:637–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Devlin MJ, Cloutier AM, Thomas NA, et al. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res. 2010;25:2078–88.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kim TY, Schwartz AV, Li X, et al. Bone marrow fat changes after gastric bypass surgery are associated with loss of bone mass. J Bone Miner Res. 2017;32:2239–47.

    Article  CAS  PubMed  Google Scholar 

  56. Cosman F, de Beur SJ, LeBoff MS, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25:2359–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Campanha-Versiani L, Pereira D, Ribeiro-Samora GA, et al. The effect of a muscle weight-bearing and aerobic exercise program on the body composition, muscular strength, biochemical markers, and bone mass of obese patients who have undergone gastric bypass surgery. Obes Surg. 2017;27:2129–37.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2016YFC1305000, 2016YFC1305001), the National Natural Science Foundation of China (91749118, 81770775), the Science and Technology Major Project of Hunan Province (2017SK1020), and the Planned Science and Technology Project of Hunan Province (2017RS3015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

For this type of study, formal consent is not required.

Informed Consent Statement

Does not apply.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, J. & Zhou, Z. Changes in Bone Mineral Density After Weight Loss Due to Metabolic Surgery or Lifestyle Intervention in Obese Patients. OBES SURG 31, 1147–1157 (2021). https://doi.org/10.1007/s11695-020-05095-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-020-05095-x

Keywords

Navigation