Skip to main content

Advertisement

Log in

Bypassing TBI: Metabolic Surgery and the Link between Obesity and Traumatic Brain Injury—a Review

  • Review
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Obesity is a common outcome of traumatic brain injury (TBI) that exacerbates principal TBI symptom domains identified as common areas of post-TBI long-term dysfunction. Obesity is also associated with increased risk of later-life dementia and Alzheimer’s disease. Patients with obesity and chronic TBI may be more vulnerable to long-term mental abnormalities. This review explores the question of whether weight loss induced by bariatric surgery could delay or perhaps even reverse the progression of mental deterioration. Bariatric surgery, with its induction of weight loss, remission of type 2 diabetes, and other expressions of the metabolic syndrome, improves metabolic efficiency, leads to reversal of brain lesions seen on imaging studies, and improves function. These observations suggest that metabolic/bariatric surgery may be a most effective therapy for TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sugerman HJ, Felton WL, Sismanis A, et al. Gastric surgery for pseudotumor cerebri associated with severe obesity. Ann Surg. 1999;229(5):634–42. Article and Commentary

    CAS  PubMed  PubMed Central  Google Scholar 

  2. ACS-TQIP: Best Practices in the Management of Traumatic Brain Injury. 2015. pdf at: https://www.facs.org/-/media/files/quality-programs/trauma/tqip/tbi_guidelines.ashx

  3. Taylor CA, Bell JM, Breiding MJ, et al. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths following chronic TBI. MMWR Surveill Summ. 2017;66:1–16.

    PubMed  PubMed Central  Google Scholar 

  4. Blyth BJ, Bazarian JJ. Traumatic alterations in consciousness: traumatic brain injury. Emerg Med Clin North Am. 2010;28(3):571–94.

    PubMed  PubMed Central  Google Scholar 

  5. Maas AIR, Menon DK, Adelson PD, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16:987–1048.

    PubMed  Google Scholar 

  6. Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;1:1–18. https://doi.org/10.3171/2017.10.JNS17352.

    Article  Google Scholar 

  7. Khellaf A, Khan DZ, Helmy A. Recent advances in traumatic brain injury. J Neurol. 2019;266(11):2878–89. https://doi.org/10.1007/s00415-019-09541-4.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Popescu C, Anghelescu A, Daia C, et al. Actual data on epidemiological evolution and prevention endeavours regarding traumatic brain injury. J Med Life. 2015;8(3):272–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Glotfelty EJ, Delgado T, Tovar-Y-Romo LB, et al. Incretin mimetics as rational candidates for the treatment of traumatic brain injury. ACS Pharmacol Transl Sci. 2019;2(2):66–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang AL, Sing DC, Rugg CM, et al. The rise of concussions in the adolescent population. Orthop J Sports Med. 2016;4(8):2325967116662458. https://doi.org/10.1177/2325967116662458.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Faul M, Xu L, Wald MM, et al. Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths 2002–2006. Atlanta: US Department of Health and Human Services, CDC; 2010.

    Google Scholar 

  12. Carroll LJ, Cassidy JD, Peloso PM, et al. Prognosis for mild traumatic brain injury: results of the WHO Collaborating Centre task force on mild traumatic brain injury. J Rehabil Med. 2004;43(Suppl):84–105.

    Google Scholar 

  13. Eme R. Neurobehavioral outcomes of mild traumatic brain injury: a mini review. Brain Sci. 2017;7(5):46. https://doi.org/10.3390/brainsci7050046.

    Article  PubMed Central  Google Scholar 

  14. Bramlett HM, Dietrich WD. Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurological outcomes. J Neurotrauma. 2015;32(23):1834–48.

    PubMed  PubMed Central  Google Scholar 

  15. Lagraoui M, Sukumar G, Latoche JR, et al. Salsalate treatment following traumatic brain injury reduces inflammation and promotes a neuroprotective and neurogenic transcriptional response with concomitant functional recovery. Brain Behav Immun. 2016;S0889–1591(16):30552–9.

    Google Scholar 

  16. McKee AC, Stern RA, Nowinski CJ, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136(Pt1):43–64.

    PubMed  Google Scholar 

  17. Logsdon AF, Lucke-Wold BP, Turner RC, et al. Role of microvascular disruption in brain damage from traumatic brain injury. Compr Physiol. 2015;5(3):1147–60.

    PubMed  PubMed Central  Google Scholar 

  18. Marchesi VT. Alzheimer’s disease and CADASIL are heritable, adult-onset dementias that both involve damaged small blood vessels. Cell Mol Life Sci. 2014;71:949–55.

    CAS  PubMed  Google Scholar 

  19. Daneshvar DH, Riley DO, Nowinski CJ, et al. Long-term consequences: effects on normal development profile after concussion. Phys Med Rehabil Clin N Am. 2011;22(4):683–700.

    PubMed  PubMed Central  Google Scholar 

  20. Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event. J Neurotrauma. 2010;27(8):1529–40.

    PubMed  Google Scholar 

  21. Corrigan JD, Hammond FM. Traumatic brain injury as a chronic health condition. Arch Phys Med Rehabil. 2013;94(6):1199–201.

    PubMed  Google Scholar 

  22. Graham NS, Sharp DJ. Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. J Neurol Neurosurg Psychiatry. 2019;90(11):1221–33.

    PubMed  Google Scholar 

  23. El-Menyar A, Goyal A, Latifi R, et al. Brain-heart interactions in traumatic brain injury. Cardiol Rev. 2017;25(6):279–88.

    PubMed  Google Scholar 

  24. Annegers JF, Coan SP. The risks of epilepsy after traumatic brain injury. Seizure. 2000;9(7):453–7.

    CAS  PubMed  Google Scholar 

  25. Molaie AM, Maguire J. Neuroendocrine abnormalities following traumatic brain injury: an important contributor to neuropsychiatric sequelae. Front Endocrinol (Lausanne). 2018;9:176.

    Google Scholar 

  26. Hibbard MR, Gordon WA, Flanagan S, et al. Sexual dysfunction after traumatic brain injury. Neuro Rehabil. 2000;15(2):107–20.

    Google Scholar 

  27. Ma EL, Smith AD, Desai N, et al. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice. Brain Behav Immun. 2017;66:56–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Karelina K, Weil ZM. Neuroenergetics of traumatic brain injury. Concussion. 2015;1(2):CNC9.

    PubMed  PubMed Central  Google Scholar 

  29. Royes LFF, Gomez-Pinilla F. Making sense of gut feelings in the traumatic brain injury pathogenesis. Neurosci Biobehav Rev. 2019;102:345–61.

    PubMed  PubMed Central  Google Scholar 

  30. Xiong Y, Mahmood A, Chopp M. Emerging treatments for traumatic brain injury. Expert Opin Emerg Drugs. 2009;14(1):67–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mohamadpour M, Whitney K, Bergold PJ. The importance of therapeutic time window in the treatment of traumatic brain injury. Front Neurosci. 2019;13:07.

    PubMed  PubMed Central  Google Scholar 

  32. McDonald SJ, Sun M, Agoston DV, et al. The effect of concomitant peripheral injury on traumatic brain injury pathobiology and outcome. J Neuroinflammation. 2016;13(1):90.

    PubMed  PubMed Central  Google Scholar 

  33. Brewer-Smyth K. Obesity, traumatic brain injury, childhood abuse, and suicide attempts in females at risk. Rehabil Nurs. 2014;39(4):183–91.

    PubMed  PubMed Central  Google Scholar 

  34. Driver S, Juengst S, McShan EE, et al. A randomized controlled trial protocol for people with traumatic brain injury enrolled in a healthy lifestyle program (GLB-TBI). Contemp Clin Trials Commun. 2019;14:100328.

    PubMed  PubMed Central  Google Scholar 

  35. Bruce-Keller AJ, Keller JN, Morrison CD. Obesity and vulnerability of the CNS. Biochim Biophys Acta. 2009;1792(5):395–400.

    CAS  PubMed  Google Scholar 

  36. Lee Y, Wu A, Zuckerman S, et al. Obesity and neurocognitive recovery after sports-related concussion in athletes: a matched cohort study. Phys Sportsmed. 2016;44(3):217–22.

    PubMed  Google Scholar 

  37. Sherman M, Liu MM, Birnbaum S, et al. Adult obese mice suffer from chronic secondary brain injury after mild TBI. J Neuroinflammation. 2016;13(1):171.

    PubMed  PubMed Central  Google Scholar 

  38. Lingsma HF, Roozenbeek B, Steyerberg EW, et al. Early prognosis in traumatic brain injury: from prophecies to predictions. Lancet Neurol. 2010;9(5):543–54.

    PubMed  Google Scholar 

  39. Meldrum DR, Morris MA, Gambone JC. Obesity pandemic: causes, consequences, and solutions–but do we have the will? Fertil Steril. 2017;107(4):833–9.

    PubMed  Google Scholar 

  40. Uranga RM, Keller JN. The complex interactions between obesity, metabolism and the brain. Front Neurosci. 2019;13:513–7.

    PubMed  PubMed Central  Google Scholar 

  41. Raji CA, Ho AJ, Parikshak NN, et al. Brain structure and obesity. Hum Brain Mapp. 2010;31(3):353–64.

    PubMed  Google Scholar 

  42. Willeumier KC, Taylor DV, Amen DG. Elevated BMI is associated with decreased blood flow in the prefrontal cortex using SPECT imaging in healthy adults. Obesity (Silver Spring). 2011;19(5):1095–7.

    Google Scholar 

  43. Dorrance AM, Matin N, Pires PW. The effects of obesity on the cerebral vasculature. Curr Vasc Pharmacol. 2014;12(3):462–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Stillman CM, Weinstein AM, Marsland AL, et al. Body-brain connections: the effects of obesity and behavioral interventions on neurocognitive aging. Front Aging Neurosci. 2017;9:115.

    PubMed  PubMed Central  Google Scholar 

  45. van Bloemendaal L, Ijzerman RG, Ten Kulve JS, et al. Alterations in white matter volume and integrity in obesity and type 2 diabetes. Metab Brain Dis. 2016;31:621–9.

    PubMed  PubMed Central  Google Scholar 

  46. Park BY, Lee MJ, Kim M, et al. Structural and functional brain connectivity changes between people with abdominal and non-abdominal obesity and their association with behaviors of eating disorders. Front Neurosci. 2018;12:741.

    PubMed  PubMed Central  Google Scholar 

  47. Hoth KF, Gonzales MM, Tarumi T, et al. Functional MR imaging evidence of altered functional activation in metabolic syndrome. Am J Neuroradiol. 2011;32:541–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Haley AP, Gonzales MM, Tarumi T, et al. Dyslipidemia links obesity to early cerebral neurochemical alterations. Obesity (Silver Spring). 2013;21(10):2007–13.

    CAS  Google Scholar 

  49. Chen VC, Liu YC, Chao SH, et al. Brain structural networks and connectomes: the brain-obesity interface and its impact on mental health. Neuropsychiatr Dis Treat. 2018;14:3199–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Restivo MR, McKinnon MC, Frey BN, et al. Effect of obesity on cognition in adults with and without a mood disorder: study design and methods. BMJ Open. 2016;6(2):e009347.

    PubMed  PubMed Central  Google Scholar 

  51. van den Berg E, Kloppenborg RP, Kessels RP, et al. Type 2 diabetes mellitus, hypertension, dyslipidemia and obesity: a systematic comparison of their impact on cognition. Biochim Biophys Acta. 1792;2009:470–81.

    Google Scholar 

  52. Figley CR, Asem JS, Levenbaum EL, et al. Effects of body mass index and body fat percent on default mode, executive control, and salience network structure and function. Front Neurosci. 2016;10:234.

    PubMed  PubMed Central  Google Scholar 

  53. Gunstad J, Lhotsky A, Wendell C, et al. Longitudinal examination of obesity and cognitive function: results from the Baltimore longitudinal study of aging. Neuroepidemiology. 2010;34:222–9.

    PubMed  PubMed Central  Google Scholar 

  54. Smith E, Hay P, Campbell L, et al. A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment. Obes Rev. 2011;12:740–55.

    CAS  PubMed  Google Scholar 

  55. Prickett C, Brennan L, Stolwyk R. Examining the relationship between obesity and cognitive function: a systematic literature review. Obes Res Clin Pract. 2015;9(2):93–113.

    PubMed  Google Scholar 

  56. Verdejo-García A, Pérez-Expósito M, Schmidt-Río-Valle J, et al. Selective alterations within executive functions in adolescents with excess weight. Obesity. 2010;18(8):1572–8.

    PubMed  Google Scholar 

  57. Wang C, Chan JS, Ren L, et al. Obesity reduces cognitive and motor functions across the lifespan. Neural Plast. 2016;2016:2473081.

    PubMed  PubMed Central  Google Scholar 

  58. Bolzenius JD, Laidlaw DH, Cabeen RP, et al. Brain structure and cognitive correlates of body mass index in healthy older adults. Behav Brain Res. 2015;278:342–7.

    PubMed  Google Scholar 

  59. Favieri F, Forte G, Casagrande M. The executive functions in overweight and obesity: a systematic review of neuropsychological cross-sectional and longitudinal studies. Front Psychol. 2019;10:2126.

    PubMed  PubMed Central  Google Scholar 

  60. Fernando HJ, Cohen RA, Gullett JM, et al. Neurocognitive deficits in a cohort with class 2 and class 3 obesity: contributions of type 2 diabetes and other comorbidities. Obesity (Silver Spring). 2019;27(7):1099–106.

    CAS  Google Scholar 

  61. Kivimäki M, Batty GD, Singh-Manoux A, et al. Association between common mental disorder and obesity over the adult life course. Br J Psychiatry. 2009;195(2):149–55.

    PubMed  PubMed Central  Google Scholar 

  62. Scott KM, Bruffaerts R, Simon GE, et al. Obesity and mental disorders in the general population: results from the world mental health surveys. Int J Obes. 2008;32(1):192–200.

    CAS  Google Scholar 

  63. Agustí A, García-Pardo MP, López-Almela I, et al. Interplay between the gut-brain axis, obesity and cognitive function. Front Neurosci. 2018;12:155.

    PubMed  PubMed Central  Google Scholar 

  64. Mazon JN, de Mello AH, Ferreira GK, et al. The impact of obesity on neurodegenerative diseases. Life Sci. 2017;182:22–8.

    CAS  PubMed  Google Scholar 

  65. Soczynska JK, Kennedy SH, Woldeyohannes HO, et al. Mood disorders and obesity: understanding inflammation as a pathophysiological nexus. NeuroMolecular Med. 2011;13(2):93–116.

    CAS  PubMed  Google Scholar 

  66. Lopresti AL, Drummond PD. Obesity and psychiatric disorders: commonalities in dysregulated biological pathways and their implications for treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2013;45:92–9.

    CAS  PubMed  Google Scholar 

  67. Lunghi C, Daniele G, Binda P, et al. Altered visual plasticity in morbidly obese subjects. Science. 2019;22:206–13.

    Google Scholar 

  68. Toda N, Ayajiki K, Okamura T. Obesity-induced cerebral hypoperfusion derived from endothelial dysfunction: one of the risk factors for Alzheimer’s disease. Curr Alzheimer Res. 2014;11(8):733–44.

    CAS  PubMed  Google Scholar 

  69. Enzinger C, Fazekas F, Matthews PM, et al. Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology. 2005;64(10):1704–11.

    CAS  PubMed  Google Scholar 

  70. O'Brien PD, Hinder LM, Callaghan BC, et al. Neurological consequences of obesity. Lancet Neurol. 2017;16(6):465–77.

    PubMed  PubMed Central  Google Scholar 

  71. Mueller K, Sacher J, Arelin K, et al. Overweight and obesity are associated with neuronal injury in the human cerebellum and hippocampus in young adults: a combined MRI, serum marker and gene expression study. Transl Psychiatry. 2012;2(12):e200.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Shruthi K, Reddy SS, Reddy PY, et al. Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. J Nutr Biochem. 2016;33:73–81.

    CAS  PubMed  Google Scholar 

  73. Letra L, Sena C. Cerebrovascular disease: consequences of obesity-induced endothelial dysfunction. Adv Neurobiol. 2017;19:163–89.

    PubMed  Google Scholar 

  74. Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest. 2017;127(1):1–4.

    PubMed  PubMed Central  Google Scholar 

  75. Chan KL, Cathomas F, Russo SJ. Central and peripheral inflammation link metabolic syndrome and major depressive disorder. Physiology (Bethesda). 2019;34(2):123–33.

    CAS  Google Scholar 

  76. Herradon G, Ramos-Alvarez MP, Gramage E. Connecting metainflammation and neuroinflammation through the PTN-MK-RPTPβ/ζ axis: relevance in therapeutic development. Front Pharmacol. 2019;10:377.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang J, Song Y, Chen Z, et al. Connection between systemic inflammation and neuroinflammation underlies neuroprotective mechanism of several phytochemicals in neurodegenerative diseases. Oxidative Med Cell Longev. 2018;2018:1972714.

    Google Scholar 

  78. Sriram K, Benkovic SA, Miller DB, et al. Obesity exacerbates chemically induced neurodegeneration. Neuroscience. 2002;115(4):1335–46.

    CAS  PubMed  Google Scholar 

  79. Vieira AA, Michels M, Florentino D, et al. Obesity promotes oxidative stress and exacerbates sepsis-induced brain damage. Curr Neurovasc Res. 2015;12(2):147–54.

    CAS  PubMed  Google Scholar 

  80. Sattler F, He J, Letendre S, et al. Abdominal obesity contributes to neurocognitive impairment in HIV infected patients with increased inflammation and immune activation. J Acquir Immune Defic Syndr. 2015;68(3):281–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hildreth KL, Van Pelt RE, Schwartz RS. Obesity, insulin resistance, and Alzheimer's Disease. Obesity (Silver Spring). 2012;20(8):1549–57.

    CAS  Google Scholar 

  82. Tucsek Z, Toth PJ, Sosnowska D. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. J Gerontol A Biol Sci Med Sci. 2013;69(10):1212–26.

    PubMed  PubMed Central  Google Scholar 

  83. Platt TL, Beckett TL, Kohler K, et al. Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease. Neuroscience. 2016;315:162–74.

    CAS  PubMed  Google Scholar 

  84. Li M, Sirko S. Traumatic brain injury: at the crossroads of neuropathology and common metabolic endocrinopathies. J Clin Med. 2018;7(3):59.

    PubMed Central  Google Scholar 

  85. Zimering MB, Patel D, Bahn G. Type 2 diabetes predicts increased risk of neurodegenerative complications in veterans suffering traumatic brain injury. J Endocrinol Diabetes. 2019;6(3):137.

    PubMed  PubMed Central  Google Scholar 

  86. Tagliaferri F, Compagnone C, Yoganandan N, et al. Traumatic brain injury after frontal crashes: relationship with body mass index. J Trauma. 2009;66:727–9.

    PubMed  Google Scholar 

  87. Neville AL, Brown CV, Weng J, et al. Obesity is an independent risk factor of mortality in severely injured blunt trauma patients. Arch Surg. 2004;139:983–7.

    PubMed  Google Scholar 

  88. Duane TM, Dechert T, Aboutanos MB, et al. Obesity and outcomes after blunt trauma. J Trauma. 2006;61:1218–21.

    PubMed  Google Scholar 

  89. Profenno LA, Porteinsoon AP, Faraone SV. Meta-analysis of Alzheimer’s disease risk with obesity, diabetes, and related disorders. Inflamm Alzheimer Dis. 2009;67:505–12.

    Google Scholar 

  90. Alosco ML, Stein TD, Tripodis Y, et al. Association of white matter rarefaction, arteriolosclerosis, and tau with dementia in chronic traumatic encephalopathy. JAMA Neurol. 2019;76(11):1298–308.

    PubMed Central  PubMed  Google Scholar 

  91. Dreer LE, Ketchum JM, Novack TA, et al. Obesity and overweight problems among individuals 1 to 25 years following acute rehabilitation for traumatic brain injury: a NIDILRR traumatic brain injury model systems study. J Head Trauma Rehabil. 2018;33(4):246–56.

    PubMed  Google Scholar 

  92. Brown RM, Tang X, Dreer LE, et al. Change in body mass index within the first-year post-injury: a VA traumatic brain injury (TBI) model systems study. Brain Inj. 2018;32(8):986–93.

    PubMed  Google Scholar 

  93. Dye L, Boyle N, Champ C, et al. The relationship between obesity and cognitive health and decline. Proc Nutr Soc. 2017;76(4):443–54.

    PubMed  Google Scholar 

  94. Yaffe K, Kanaya A, Lindquist K, et al. The metabolic syndrome, inflammation, and risk of cognitive decline. J Am Med Assoc. 2004;292:2237–42.

    CAS  Google Scholar 

  95. Elias MF, Elias PK, Sullivan LM, et al. Lower cognitive function in the presence of obesity and hypertension: the Framingham Heart Study. Int J Obes Relat Metab Disord. 2003;27:260–8.

    CAS  PubMed  Google Scholar 

  96. Defense and Veterans Brain Injury Center. DoD numbers for traumatic brain injury. Department of Defense. 2017. pdf at: https://dvbic.dcoe.mil/dod-worldwide-numbers-tbi. Accessed 20 Jun 2020.

  97. Devoto C, Arcurio L, Fetta J, et al. Inflammation relates to chronic behavioral and neurological symptoms in military personnel with traumatic brain injuries. Cell Transplant. 2017;26(7):1169–77.

    PubMed  PubMed Central  Google Scholar 

  98. Taylor BC, Hagel EM, Carlson KF, et al. Prevalence and costs of co-occurring traumatic brain injury with and without psychiatric disturbance and pain among Afghanistan and Iraq war veteran VA users. Med Care. 2012;50(4):342–6.

    PubMed  Google Scholar 

  99. VA Management of Overweight and Obesity Working Group. VA/DoD Clinical Practice Guideline for Screening and Management of Overweight and Obesity. Washington, DC: VA Health Guidelines: US Veterans Affairs & Department of Defense; 2014.

    Google Scholar 

  100. Maciejewski ML, Neelon B, Yancy WS, Van Scoyoc L, McVay MA, Vijan S. Long-term healthcare costs of overweight and obese veterans. The Obesity Society Annual Meeting Atlanta, GA; 2013.

  101. Starr KEN, Hammond CAS, Scharver HC, et al. High rate of overweight and obesity in post-combat military service members (MSM) and veterans exposed to blast and/or blunt head trauma. FASEB J. 2013;27(1). https://www.fasebj.org/doi/abs/10.1096/fasebj.27.1_supplement.1067.8. Accessed 20 Jun 2020.

  102. Ponsford JL, Downing MG, Olver J, et al. Longitudinal follow-up of patients with traumatic brain injury: outcome at two, five, and ten years post-injury. J Neurotrauma. 2014;31:64–77.

    PubMed  Google Scholar 

  103. Zihl J, Almeida OF. Neuropsychology of neuroendocrine dysregulation after traumatic brain injury. J Clin Med. 2015;4(5):1051–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Physiotherapy Alberta College. Concussion management: a toolkit for physiotherapists. psf at: https://www.physiotherapyalberta.ca/files/concussion_toolkit.pdf. Accessed 18 May 2020.

  105. McInnes K, Friesen CL, MacKenzie DE, et al. Mild traumatic brain injury (mTBI) and chronic cognitive impairment: a scoping review [published correction appears in PLoS One. 2019 Jun 11;14(6):e0218423]. PLoS One. 2017;12(4):e0174847.

    PubMed  PubMed Central  Google Scholar 

  106. Centers for Disease Control and Prevention. What are the signs and symptoms of concussion? https://www.cdc.gov/traumaticbraininjury/symptoms.html. Accessed 28 May 2020.

  107. Stocchetti N, Zanier ER. Chronic impact of traumatic brain injury on outcome and quality of life: a narrative review. Crit Care. 2016;20(1):148.

    PubMed  PubMed Central  Google Scholar 

  108. Frencham KA, Fox AM, Maybery MT. Neuropsychological studies of mild traumatic brain injury: a meta-analytic review of research since 1995. J Clin Exp Neuropsychol. 2005;27(3):334–51.

    PubMed  Google Scholar 

  109. Schretlen DJ, Shapiro AM. A quantitative review of the effects of traumatic brain injury on cognitive functioning. Int Rev Psychiatry. 2003;15(4):341–9.

    PubMed  Google Scholar 

  110. Rabinowitz AR, Levin HS. Cognitive sequelae of traumatic brain injury. Psychiatr Clin North Am. 2014;37(1):1–11.

    PubMed  PubMed Central  Google Scholar 

  111. O’Jile JR, Ryan LM, Betz B, et al. Information processing following mild head injury. Arch Clin Neuropsychol. 2006;21(4):293–6.

    PubMed  Google Scholar 

  112. Konrad C, Geburek AJ, Rist F, et al. Long-term cognitive and emotional consequences of mild traumatic brain injury. Psychol Med. 2011;41(6):1197–211.

    CAS  PubMed  Google Scholar 

  113. Sterr A, Herron KA, Hayward C, et al. Are mild head injuries as mild as we think? Neurobehavioral concomitants of chronic post-concussion syndrome. BMC Neurol. 2006;6:7.

    PubMed  PubMed Central  Google Scholar 

  114. Ozga JE, Povroznik JM, Engler-Chiurazzi EB, et al. Executive (dys)function after traumatic brain injury: special considerations for behavioral pharmacology. Behav Pharmacol. 2018;29(7):617–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zimmermann N, Pereira N, Hermes-Pereira A, et al. Executive functions profiles in traumatic brain injury adults: implications for rehabilitation studies. Brain Inj. 2015;29(9):1071–81.

    PubMed  Google Scholar 

  116. Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68.

    PubMed  Google Scholar 

  117. Belanger HG, Proctor-Weber Z, Kretzmer T, et al. Symptom complaints following reports of blast versus non-blast mild TBI: does mechanism of injury matter? Clin Neuropsychol. 2011;25(5):702–15.

    PubMed  Google Scholar 

  118. Bogdanova Y, Verfaellie M. Cognitive sequelae of blast-induced traumatic brain injury: recovery and rehabilitation. Neuropsychol Rev. 2012;22(1):4–20.

    PubMed  PubMed Central  Google Scholar 

  119. Gunstad J, Paul RH, Cohen RA, et al. Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Compr Psychiatry. 2007;48:57–61.

    PubMed  Google Scholar 

  120. Zilliox LA, Chadrasekaran K, Kwan JY, et al. Diabetes and cognitive impairment. Curr Diab Rep. 2016;16(9):87.

    PubMed  PubMed Central  Google Scholar 

  121. Lajoie AC, Lafontaine AL, Kimoff RJ, et al. Obstructive sleep apnea in neurodegenerative disorders: current evidence in support of benefit from sleep apnea treatment. J Clin Med. 2020;9(2):297.

    CAS  PubMed Central  Google Scholar 

  122. Aoun R, Rawal H, Attarian H, et al. Impact of traumatic brain injury on sleep: an overview. Nat Sci Sleep. 2019;11:131–40.

    PubMed  PubMed Central  Google Scholar 

  123. Shively S, Scher AI, Perl DP, et al. Dementia resulting from traumatic brain injury: what is the pathology? Arch Neurol. 2012;69(10):1245–51.

    PubMed  PubMed Central  Google Scholar 

  124. Defrin R. Chronic post-traumatic headache: clinical findings and possible mechanisms. J Man Manip Ther. 2014;22(1):36–44.

    PubMed  PubMed Central  Google Scholar 

  125. Martins HAL, Martins BBM, Ribas VR, et al. Life quality, depression and anxiety symptoms in chronic post-traumatic headache after mild brain injury. Dement Neuropsychol. 2012;6(1):53–8.

    PubMed  PubMed Central  Google Scholar 

  126. De Benedittis G, De Santis A. Chronic posttraumatic HA: clinical, psychopathological features and outcome determinants. J Neurosurg Sci. 1983;27(3):177–86.

    PubMed  Google Scholar 

  127. Walker WC, Seel RT, Curtiss G, et al. Headache after moderate and severe TBI: a longitudinal analysis. Arch Phys Med Rehabil. 2005;86(9):1793–800.

    PubMed  Google Scholar 

  128. Stacy A, Lucas S, Dikmen S, et al. Natural history of headache five years after traumatic brain injury. J Neurotrauma. 2017;34(8):1558–64.

    Google Scholar 

  129. Uomoto JM, Esselman PC. Traumatic brain injury and chronic pain: differential types and rates by head injury severity. Arch Phys Med Rehabil. 1993;74:61–4.

    CAS  PubMed  Google Scholar 

  130. Theeler BJ, Erickson JC. Mild head trauma and chronic headaches in returning US soldiers. Headache. 2009;49:529–34.

    PubMed  Google Scholar 

  131. Lucas S, Hoffman JM, Bell KR, et al. A prospective study of prevalence and characterization of headache following mild traumatic brain injury. Cephalalgia. 2014;34(2):93–102.

  132. Wang SJ, Chen PK, Fuh JL. Comorbidities of migraine. Front Neurol. 2010;1:16.

    PubMed  PubMed Central  Google Scholar 

  133. Ford ES, Li C, Pearson WS, et al. Body mass index and headaches: findings from a national sample of US adults. Cephalalgia. 2008;28:1270–6.

    CAS  PubMed  Google Scholar 

  134. Peterlin BL, Rosso AL, Rapoport AM, et al. Obesity and migraine: the effect of age, gender and adipose tissue distribution. Headache. 2010;50:52–62.

    PubMed  Google Scholar 

  135. Chai NC, Scher AI, Moghekar A, et al. Obesity and headache: part I—a systematic review of the epidemiology of obesity and headache. Headache. 2014;54(2):219–34.

    PubMed  PubMed Central  Google Scholar 

  136. Bigal ME, Liberman JN, Lipton RB. Obesity and migraine: a population study. Neurology. 2006;66(4):545–50.

    PubMed  Google Scholar 

  137. Chai NC, Bond DS, Moghekar A, et al. Obesity and headache: part II–potential mechanism and treatment considerations. Headache. 2014;54(3):459–71.

    PubMed  PubMed Central  Google Scholar 

  138. Bond DS, Roth J, Nash JM, et al. Migraine and obesity: epidemiology, possible mechanisms and the potential role of weight loss treatment. Obes Rev. 2011;12(5):e362–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Pietrzak RH, Johnson DC, Goldstein MB, et al. Posttraumatic stress disorder mediates the relationship between mild traumatic brain injury and health and psychosocial functioning in veterans of Operations Enduring Freedom and Iraqi Freedom. J Nerv Ment Dis. 2009;197:748–53.

    PubMed  Google Scholar 

  140. Fedoroff JP, Starkstein SE, Forrester AW, et al. Depression in patients with acute traumatic brain injury. Am J Psychiatry. 1992;149:918–23.

    CAS  PubMed  Google Scholar 

  141. Vasterling JJ, Verfaellie M, Sullivan KD. Mild traumatic brain injury and posttraumatic stress disorder in returning veterans: perspectives from cognitive neuroscience. Clin Psychol Rev. 2009;29:674–84.

    PubMed  Google Scholar 

  142. Venkatesan UM, Lancaster K, Lengenfelder J, et al. Independent contributions of social cognition and depression to functional status after moderate or severe traumatic brain injury. Neuropsychol Rehabil. 2020:1–17. https://doi.org/10.1080/09602011.2020.1749675.

  143. Holsinger T, Steffens DC, Phillips C, et al. Head injury in early adulthood and the lifetime risk of depression. Arch Gen Psychiatry. 2002;59(1):17–22.

    PubMed  Google Scholar 

  144. Fann JR, Hart T, Schomer KG. Treatment for depression after traumatic brain injury: a systematic review. J Neurotrauma. 2009;26:2383–402.

    PubMed  PubMed Central  Google Scholar 

  145. Ponsford J, Alway Y, Gould KR. Epidemiology and natural history of psychiatric disorders after TBI. J Neuropsychiatr Clin Neurosci. 2018;30:262–70.

    Google Scholar 

  146. Chi Y-C, Wu H-L, Chu C-P, et al. Traumatic brain injury and affective disorder: a nationwide cohort study in Taiwan, 2000–2010. J Affect Disord. 2016;191:56–61.

    PubMed  Google Scholar 

  147. Silverberg ND, Panenka WJ. Antidepressants for depression after concussion and traumatic brain injury are still best practice. BMC Psychiatry. 2019;19(1):100.

    PubMed  PubMed Central  Google Scholar 

  148. Vanderploeg RD, Curtiss G, Luis C, et al. Long-term morbidities following self-reported mild traumatic brain injury. J Clin Exp Neuropsychol. 2007;29(6):585–98.

    PubMed  Google Scholar 

  149. Hoge CW, McGurk D, Thomas JL, et al. Mild traumatic brain injury in U.S. soldiers returning from Iraq. N Engl J Med. 2008;358:453–63.

    CAS  PubMed  Google Scholar 

  150. Fann JR, Burington B, Leonetti A, et al. Psychiatric illness following traumatic brain injury in an adult health maintenance organization population. Arch Gen Psychiatry. 2004;61:53–61.

    PubMed  Google Scholar 

  151. Fralick M, Thiruchelvam D, Tien HC, et al. Risk of suicide after a concussion. CMAJ. 2016;188(7):497–504.

    PubMed  PubMed Central  Google Scholar 

  152. Armenta RF, Walter KH, Geronimo-Hara TR, et al. Longitudinal trajectories of comorbid PTSD and depression symptoms among U.S. service members and veterans. BMC Psychiatry. 2019;19:396.

    PubMed  PubMed Central  Google Scholar 

  153. Kleber RJ. Trauma and public mental health: a focused review. Front Psychiatry. 2019;10:451.

    PubMed  PubMed Central  Google Scholar 

  154. Lancaster CL, Teeters JB, Gros DF, et al. Posttraumatic stress disorder: overview of evidence-based assessment and treatment. J Clin Med. 2016;5(11):105.

    PubMed Central  Google Scholar 

  155. Tanielian T, Jaycox LH, editors. Invisible wounds of war: psychological and cognitive injuries, their consequences, and services to assist recovery. Santa Monica: RAND Corp.; 2008. Ebook at: https://www.rand.org/pubs/monographs/MG720.html. Accessed 22 May 2020.

  156. Cole MA, Muir JJ, Gans JJ, et al. Simultaneous treatment of neurocognitive and psychiatric symptoms in veterans with post-traumatic stress disorder and history of mild traumatic brain injury: a pilot study of mindfulness-based stress reduction. Mil Med. 2015;180(9):956.

    PubMed  Google Scholar 

  157. Vincent A, Roebuck-Spencer TM, Cernich A. Cognitive changes and dementia risk after traumatic brain injury: implications for aging military personnel. Alzheimers Dement. 2014;10(3 Suppl):s174–87.

    PubMed  Google Scholar 

  158. Maguen S, Madden E, Cohen B, et al. The relationship between body mass index and mental health among Iraq and Afghanistan veterans. J Gen Intern Med. 2013;28(Suppl 2):s563–70.

    PubMed  Google Scholar 

  159. Willeumier K, Taylor DV, Amen DG. Elevated body mass in National Football League players linked to cognitive impairment and decreased prefrontal cortex and temporal pole activity. Transl Psychiatry. 2012;2(1):e68.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Stern RA, Daneshvar D, Baugh CM, Seichepine DR, Montenigro PH, Riley DO, et al. Diagnosing and evaluating traumatic encephalopathy using clinical tests [DETECT] study. NIH funded, ongoing study performed at Boston University: https://www.bu.edu/cte/our-research/clinical-studies-detect/. Accessed 1 Jun 2020.

  161. Barber J, Bayer L, Pietrzak RH, et al. Assessment of rates of overweight and obesity and symptoms of posttraumatic stress disorder and depression in a sample of Operation Enduring Freedom/Operation Iraqi Freedom veterans. Mil Med. 2011;176(2):151–5.

    PubMed  Google Scholar 

  162. Vieweg WV, Julius DA, Benesek J, et al. Posttraumatic stress disorder and body mass index in military veterans: preliminary findings. Prog Neuro-Psychopharmacol Biol Psychiatry. 2006;30(6):1150–4.

    Google Scholar 

  163. Vieweg WV, Julius DA, Fernandez A, et al. Posttraumatic stress disorder in male military veterans with comorbid overweight and obesity: psychotropic, antihypertensive, and metabolic medications. Prim Care Companion J Clin Psychiatry. 2006;8(1):25–31.

    PubMed  PubMed Central  Google Scholar 

  164. Masodkar K, Johnson J, Peterson MJ. A review of posttraumatic stress disorder and obesity: exploring the link. Prim Care Companion CNS Disord. 2016;18(1):10.

    PubMed Central  Google Scholar 

  165. Jin H, Lanouette NM, Mudaliar S, et al. Association of posttraumatic stress disorder with increased prevalence of metabolic syndrome. J Clin Psychopharmacol. 2009;29(3):210–5.

    PubMed  PubMed Central  Google Scholar 

  166. Pagoto SL, Schneider KL, Bodenlos JS, et al. Association of post-traumatic stress disorder and obesity in a nationally representative sample. Obesity (Silver Spring). 2012;20(1):200–5.

    Google Scholar 

  167. Babic D, Jakovljevic M, Martinac M, et al. Metabolic syndrome and combat post-traumatic stress disorder intensity: preliminary findings. Psychiatr Danub. 2007;19:68–75.

    PubMed  Google Scholar 

  168. Leard Mann CA, Woodall KA, Littman AJ, et al. Post-traumatic stress disorder predicts future weight change in the Millennium Cohort Study. Obesity (Silver Spring). 2015;234:886–92.

    Google Scholar 

  169. Mitchell KS, Aiello AE, Galea S, et al. PTSD and obesity in the Detroit neighborhood health study. Gen Hosp Psychiatry. 2013;356:671–3.

    Google Scholar 

  170. Roberts AL, Agnew-Blais JC, Spiegelman D, et al. Posttraumatic stress disorder and incidence of type 2 diabetes mellitus in a sample of women: a 22-year longitudinal study. JAMA Psychiatry. 2015;72(3):203–10.

    PubMed  PubMed Central  Google Scholar 

  171. Lastra G, Syed S, Kurukulasuriya LR, et al. Type 2 diabetes mellitus and hypertension: an update. Endocrinol Metab Clin N Am. 2014;43(1):103–22.

    Google Scholar 

  172. Vaccarino V, Goldberg J, Rooks C, et al. Clinical research: post-traumatic stress disorder and incidence of coronary heart disease. A twin study. J Am Coll Cardiol. 2013;62:970–8.

    PubMed  Google Scholar 

  173. Yaffe K, Vittinghoff E, Lindquist K, et al. Posttraumatic stress disorder and risk of dementia among US Veterans PTSD and dementia in US veterans. Arch Gen Psychiatry. 2010;67:608–13.

    PubMed  PubMed Central  Google Scholar 

  174. Qureshi SU, Kimbrell T, Pyne JM, et al. Greater prevalence and incidence of dementia in older veterans with posttraumatic stress disorder. J Am Geriatr Soc. 2010;58:1627–33.

    PubMed  Google Scholar 

  175. Veitch DP, Friedl KE, Weiner MW. Military risk factors for cognitive decline, dementia and Alzheimer’s disease. Curr Alzheimer Res. 2013;10(9):907–30.

    CAS  PubMed  Google Scholar 

  176. Haboubi NH, Long J, Koshy M, et al. Short-term sequelae of minor head injury (6 years experience of minor head injury clinic). Disabil Rehabil. 2001;23(14):635–8.

    CAS  PubMed  Google Scholar 

  177. Ponsford JL, Parcell DL, Sinclair KL, et al. Changes in sleep patterns following traumatic brain injury: a controlled study. Neurorehabil Neural Repair. 2013;27(7):613–21.

    PubMed  Google Scholar 

  178. Mantua J, Mahan K, Henry O, et al. Altered sleep composition after traumatic brain injury does not affect declarative sleep dependent memory consolidation. Front Hum Neurosci. 2015;9(328):379.

    Google Scholar 

  179. Wilde MC, Castriotta RJ, Lai JM, et al. Cognitive impairment in patients with traumatic brain injury and obstructive sleep apnea. Arch Phys Med Rehabil. 2007;88(10):1284–8.

    PubMed  Google Scholar 

  180. Sandsmark DK, Elliott JE, Lim MM. Sleep-wake disturbances after traumatic brain injury: synthesis of human and animal studies. Sleep. 2017;40(5):zsx044.

    PubMed Central  Google Scholar 

  181. Morgenthaler T, Kagramanov V, Hanak V, et al. Complex sleep apnea syndrome: is it a unique clinical syndrome? Sleep. 2006;29:1203–9.

    PubMed  Google Scholar 

  182. Ho ML, Brass SD. Obstructive sleep apnea. Neurol Int. 2011;3(3):e15.

    PubMed  PubMed Central  Google Scholar 

  183. Wickwire EM, Williams SG, Roth T, et al. Sleep, sleep disorders, and mild traumatic brain injury. What we know and what we need to know: findings from a National Working Group. Neurotherapeutics. 2016;13(2):403–17.

    PubMed  PubMed Central  Google Scholar 

  184. Mathias JL, Alvaro PK. Prevalence of sleep disturbances, disorders, and problems following traumatic brain injury: a meta-analysis. Sleep Med. 2012;13(7):898–905.

    CAS  PubMed  Google Scholar 

  185. Baumann CR, Werth E, Stocker R, et al. Sleep-wake disturbances 6 months after traumatic brain injury: a prospective study. Brain. 2007;130:1873–83.

    PubMed  Google Scholar 

  186. Castriotta RJ, Wilde MC, Lai JM, et al. Prevalence and consequences of sleep disorders in traumatic brain injury. J Clin Sleep Med. 2007;3(4):349–56.

    PubMed  PubMed Central  Google Scholar 

  187. Masel BE, Scheibel RS, Kimbark T, et al. Excessive daytime sleepiness in adults with brain injuries. Arch Phys Med Rehabil. 2001;82:1526–32.

    CAS  PubMed  Google Scholar 

  188. Collen J, Orr N, Lettieri CJ, et al. Sleep disturbances among soldiers with combat-related traumatic brain injury. Chest. 2012;142:622–30.

    PubMed  Google Scholar 

  189. Mustafa M, Erokwu N, Ebose I, et al. Sleep problems and the risk for sleep disorders in an outpatient veteran population. Sleep Breath. 2005;9(2):57–63.

    PubMed  Google Scholar 

  190. Ocasió-Tascon ME, Alicea-Colón E, Torres-Palacios A, et al. The veteran population: one at high risk for sleep-disordered breathing. Sleep Breath. 2006;10(2):70–5.

    PubMed  Google Scholar 

  191. Mysliwiec V, Gill J, Lee H, et al. Sleep disorders in US military personnel: a high rate of comorbid insomnia and obstructive sleep apnea. Chest. 2013;144(2):549–57.

    PubMed  PubMed Central  Google Scholar 

  192. Zuzuárregui JRP, Bickart K, Kutscher SJ. A review of sleep disturbances following traumatic brain injury. SSP. 2018;2:2. https://doi.org/10.1186/s41606-018-0020-4. Accessed 20 Jun 2020.

  193. Gilbert KS, Kark SM, Gehrman P, et al. Sleep disturbances, TBI and PTSD: implications for treatment and recovery. Clin Psychol Rev. 2015;40:195–212.

    PubMed  PubMed Central  Google Scholar 

  194. Nakase-Richardson R, Schwartz DJ. Brain injury professional sleep apnea and brain injury. BIP. 2018;14(5):22.

  195. Lim MM, Baumann CR. Sleep-wake disorders in patients with traumatic brain injury. Up to Date. 2020. webpage at: https://www.uptodate.com/contents/sleep-wake-disorders-in-patients-with-traumatic-brain-injury. Accessed 14 Aug 2020.

  196. Vanden Brook T. Veterans’ claims for sleep apnea soar. USA Today. May 30, 2014: https://www.usatoday.com/story/news/nation/2014/05/21/veterans-administration-sleep-apnea/9291425/

  197. Babson KA, Del Re AC, Bonn-Miller MO, et al. The comorbidity of sleep apnea and mood, anxiety, and substance use disorders among obese military veterans within the Veterans Health Administration. J Clin Sleep Med. 2013;9(12):1253–8.

    PubMed  PubMed Central  Google Scholar 

  198. Brundage JF, Wertheimer E, Clark L. Obstructive sleep apnea, active component, U.S. Armed Forces: January 2000-December 2000. Med Surveill Monthly Rep. 2010;17(5):8–11.

    Google Scholar 

  199. Troxel WM, Shih RA, Pedersen ER, et al. Sleep in the military: promoting healthy sleep among U.S. service members. Rand Health Q. 2015;5(2):19.

    PubMed  PubMed Central  Google Scholar 

  200. Patel SR, Hu FB. Short sleep duration and weight gain: a systematic review. Obesity (Silver Spring). 2008;16(3):643–53.

    Google Scholar 

  201. Yu JC, Berger P. Sleep apnea and obesity. SD Med. 2011:28–34.

  202. Beccuti G, Pannain S. Sleep and obesity. Curr Opin Clin Nutr Metab Care. 2011;14(4):402–12.

    PubMed  PubMed Central  Google Scholar 

  203. Phillips BG, Hisel TM, Kato M, et al. Recent weight gain in patients with newly diagnosed obstructive sleep apnea. J Hypertens. 1999;17(9):1297–300.

    CAS  PubMed  Google Scholar 

  204. Phillips BG, Kato M, Narkiewicz K, et al. Increases in leptin levels, sympathetic drive, and weight gain in obstructive sleep apnea. Am J Physiol Heart Circ Physiol. 2000;279(1):H234–7.

    CAS  PubMed  Google Scholar 

  205. Romero-Corral A, Caples SM, Lopez-Jimenez F, et al. Interactions between obesity and obstructive sleep apnea: implications for treatment. Chest. 2010;137(3):711–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Sutherland K, Lee RWW, Phillips CL, et al. Effect of weight loss on upper airway size and facial fat in men with obstructive sleep apnea. Thorax. 2011;66:797–803.

    PubMed  Google Scholar 

  207. Nousseir HM. Obesity: the major preventable risk factor of obstructive sleep apnea. J Curr Med Res Pract. 2019;4:1–5.

    Google Scholar 

  208. Li T, Yao ZM, Wang L, et al. The role of body fat rate in the evaluation of obstructive sleep apnea. Chinese J Otorhinolaryngology Head and Neck Surgery. 2019;54(6):427–31.

  209. Peppard PE, Young T, Palta M, et al. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA. 2000;284(23):3015–321.

    CAS  PubMed  Google Scholar 

  210. Tufik S, Santos-Silva R, Taddei JA, et al. Obstructive sleep apnea syndrome in the Sao Paulo Epidemiologic Sleep Study. Sleep Med. 2010;11:441.

    PubMed  Google Scholar 

  211. Garvey JF, Pengo MF, Drakatos P, et al. Epidemiological aspects of obstructive sleep apnea. J Thorac Dis. 2015;7(5):920–9.

    PubMed  PubMed Central  Google Scholar 

  212. Rajala R, Partinen M, Sane T, et al. Obstructive sleep apnoea syndrome in morbidly obese patients. J Intern Med. 1991;230:125–9.

    CAS  PubMed  Google Scholar 

  213. Richman RM, Elliott LM, Burns CM, et al. The prevalence of obstructive sleep apnoea in an obese female population. Int J Obes Relat Metab Disord. 1994;18:173–7.

    CAS  PubMed  Google Scholar 

  214. Vgontzas AN, Tan TL, Bixler EO, et al. Sleep apnea and sleep disruption in obese patients. Arch Intern Med. 1994;154:1705–11.

    CAS  PubMed  Google Scholar 

  215. Davis G, Patel JA, Gagne DJ. Pulmonary considerations in obesity and the bariatric surgical patient. Med Clin North Am. 2007;91:433–42.

    PubMed  Google Scholar 

  216. Frey WC, Pilcher J. Obstructive sleep-related breathing disorders in patients evaluated for bariatric surgery. Obes Surg. 2003;13:676–83.

    PubMed  Google Scholar 

  217. Morrell MJ. Residual sleepiness in patients with optimally treated sleep apnea: a case for hypoxia-induced oxidative brain injury. Sleep. 2004;27:186–7.

    PubMed  Google Scholar 

  218. O'Keeffe T, Patterson EJ. Evidence supporting routine polysomnography before bariatric surgery. Obes Surg. 2004;14:23–6.

    PubMed  Google Scholar 

  219. van Kralingen KW, de Kanter W, de Groot GH, et al. Assessment of sleep complaints and sleep-disordered breathing in a consecutive series of obese patients. Respiration. 1999;66:312–6.

    PubMed  Google Scholar 

  220. Schwartz AR, Gold AR, Schubert N, et al. Effect of weight loss on upper airway collapsibility in obstructive sleep apnea. Am Rev Respir Dis. 1991;144:494–8.

    CAS  PubMed  Google Scholar 

  221. Peiser J, Lavie P, Ovnat A, et al. Sleep apnea syndrome in the morbidly obese as an indication for weight reduction surgery. Ann Surg. 1984;199:112–5.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Buchwald.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

The study was performed in accord with the ethical standards of the Declaration of Helsinki.

Additional information

The next two parts of this review paper will address the effects of weight loss on cognition, migraine, depression/PTSD, and obstructive sleep apnea as well as the mechanisms of metabolic surgery that may unlock the pathophysiology of chronic TBI.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGlennon, T.W., Buchwald, J.N., Pories, W.J. et al. Bypassing TBI: Metabolic Surgery and the Link between Obesity and Traumatic Brain Injury—a Review. OBES SURG 30, 4704–4714 (2020). https://doi.org/10.1007/s11695-020-05065-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-020-05065-3

Keywords

Navigation