Skip to main content

Advertisement

Log in

Gastric Bypass Surgery Improves the Skeletal Muscle Ceramide/S1P Ratio and Upregulates the AMPK/ SIRT1/ PGC-1α Pathway in Zucker Diabetic Fatty Rats

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Purpose

Roux-en-Y gastric bypass (RYGB) is associated with remission of type 2 diabetes. However, the cellular and molecular mechanisms remain unknown. We hypothesized that RYGB would increase peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), sirtuin-1 (SIRT1), AMPK/pAMPK, and citrate synthase (CS) protein expression and decrease insulin resistance and these changes would be mediated by sphingolipids, including ceramides and the sphingolipid metabolite sphingosine-1 phosphate (S1P).

Materials and Methods

Male ZDF rats were randomized to RYGB (n = 7) or sham surgery (n = 7) and harvested after 28 days. Total tissue ceramide, ceramide subspecies (C14:0, C16:0, C18:0, C18:1, C20:0, C24:0, and C24:1), and S1P were quantified in the white gastrocnemius muscle using LC-ESI-MS/MS after separation with HPLC. Total SIRT1, AMPK, PGC-1α, and CS protein expression were measured by Western blot.

Results

Body weight, fasting glucose, insulin, and HOMA-IR decreased significantly after RYGB compared with sham control. These changes were paralleled by lower total ceramide (483.7 ± 32.3 vs. 280.1 ± 38.8 nmol/g wwt), C18:0 ceramide subspecies (P < 0.05), higher S1P (0.83 ± 0.05 vs. 1.54 ± 0.21 nmol/g wwt, P < 0.05), and a lower ceramide/S1P ratio (P < 0.05) in the RYGB versus sham group. AMPK, pAMPK, SIRT1, PGC-1α, and CS protein expression was also higher after RYGB (P < 0.05). The ceramide/S1P ratio correlated with weight loss (r = 0.48, P = 0.08), insulin resistance (r = 0.61, P = 0.02), PGC-1α (r = − 0.51, P < 0.06), CS (r = − 0.63, P = 0.01), and SIRT1 (r = − 0.54, P < 0.04).

Conclusion

Our data demonstrate that sphingolipid balance, and increased AMPK, SIRT1, PGC-1α, and CS protein expression are part of the mechanism that contributes to the remission of diabetes after RYGB surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–56. e5

    Article  PubMed  Google Scholar 

  2. Brethauer SA et al. Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg. 2013;258(4):628–36. discussion 636-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes - 5-year outcomes. N Engl J Med. 2017;376(7):641–51.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Abu-Gazala S, Horwitz E, Ben-Haroush Schyr R, et al. Sleeve gastrectomy improves glycemia independent of weight loss by restoring hepatic insulin sensitivity. Diabetes. 2018;67(6):1079–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bramante CT, Lee CJ, Gudzune KA. Treatment of obesity in patients with diabetes. Diabetes Spectr. 2017;30(4):237–43.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bonnard C, Durand A, Peyrol S, et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest. 2008;118(2):789–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee Y, Hirose H, Ohneda M, et al. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci U S A. 1994;91(23):10878–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Itani SI, Ruderman NB, Schmieder F, et al. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002;51(7):2005–11.

    Article  CAS  PubMed  Google Scholar 

  9. Kelley DE, He J, Menshikova EV, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51(10):2944–50.

    Article  CAS  PubMed  Google Scholar 

  10. Anderson EJ, Lustig ME, Boyle KE, et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest. 2009;119(3):573–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jheng HF, Tsai PJ, Guo SM, et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol. 2012;32(2):309–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.

    Article  CAS  PubMed  Google Scholar 

  13. Wensaas AJ, Rustan AC, Just M, et al. Fatty acid incubation of myotubes from humans with type 2 diabetes leads to enhanced release of beta-oxidation products because of impaired fatty acid oxidation: effects of tetradecylthioacetic acid and eicosapentaenoic acid. Diabetes. 2009;58(3):527–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Adams SH, Hoppel CL, Lok KH, et al. Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J Nutr. 2009;139(6):1073–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1(6):361–70.

    Article  CAS  PubMed  Google Scholar 

  16. Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 2007;26(7):1913–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Canto C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol. 2009;20(2):98–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou YT, Grayburn P, Karim A, et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A. 2000;97(4):1784–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang H, Kasumov T, Gatmaitan P, et al. Gastric bypass surgery reduces plasma ceramide subspecies and improves insulin sensitivity in severely obese patients. Obesity (Silver Spring). 2011;19(11):2235–40.

    Article  CAS  Google Scholar 

  20. Haus JM, Kashyap SR, Kasumov T, et al. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes. 2009;58(2):337–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adams 2nd JM et al. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes. 2004;53(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  22. Broskey NT, Obanda DN, Burton JH, et al. Skeletal muscle ceramides and daily fat oxidation in obesity and diabetes. Metabolism. 2018;82:118–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Holland WL, Brozinick JT, Wang LP, et al. Inhibition of ceramide synthesis ameliorates glucocorticoid- , saturated-fat- , and obesity-induced insulin resistance. Cell Metab. 2007;5(3):167–79.

    Article  CAS  PubMed  Google Scholar 

  24. Meguid MM, Ramos EJ, Suzuki S, et al. A surgical rat model of human Roux-en-Y gastric bypass. J Gastrointest Surg. 2004;8(5):621–30.

    Article  PubMed  Google Scholar 

  25. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.

    Article  CAS  PubMed  Google Scholar 

  26. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7.

    Article  CAS  Google Scholar 

  27. Kasumov T, Huang H, Chung YM, et al. Quantification of ceramide species in biological samples by liquid chromatography electrospray ionization tandem mass spectrometry. Anal Biochem. 2010;401(1):154–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Benton CR, Nickerson JG, Lally J, et al. Modest PGC-1alpha overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria. J Biol Chem. 2008;283(7):4228–40.

    Article  CAS  PubMed  Google Scholar 

  29. Bruce CR, Hoy AJ, Turner N, et al. Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes. 2009;58(3):550–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hill JO et al. Obesity and the environment: where do we go from here? Science. 2003;299(5608):853–5.

    Article  CAS  PubMed  Google Scholar 

  31. Holland WL, Knotts TA, Chavez JA, et al. Lipid mediators of insulin resistance. Nutr Rev. 2007;65(6 Pt 2):S39–46.

    Article  PubMed  Google Scholar 

  32. Houmard JA. Intramuscular lipid oxidation and obesity. Am J Physiol Regul Integr Comp Physiol. 2008;294(4):R1111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arboleda G, Cárdenas Y, Rodríguez Y, et al. Differential regulation of AKT, MAPK and GSK3beta during C2-ceramide-induced neuronal death. Neurotoxicology. 2010;31(6):687–93.

    Article  CAS  PubMed  Google Scholar 

  34. Cuvillier O, Pirianov G, Kleuser B, et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature. 1996;381(6585):800–3.

    Article  CAS  PubMed  Google Scholar 

  35. Taha TA, Kitatani K, el-Alwani M, et al. Loss of sphingosine kinase-1 activates the intrinsic pathway of programmed cell death: modulation of sphingolipid levels and the induction of apoptosis. FASEB J. 2006;20(3):482–4.

    Article  CAS  Google Scholar 

  36. Ito S, Iwaki S, Koike K, et al. Increased plasma sphingosine-1-phosphate in obese individuals and its capacity to increase the expression of plasminogen activator inhibitor-1 in adipocytes. Coron Artery Dis. 2013;24(8):642–50.

    PubMed  Google Scholar 

  37. Kowalski GM, Carey AL, Selathurai A, et al. Plasma sphingosine-1-phosphate is elevated in obesity. PLoS One. 2013;8(9):e72449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cantalupo A, Di Lorenzo A. S1P signaling and de novo biosynthesis in blood pressure homeostasis. J Pharmacol Exp Ther. 2016;358(2):359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Keul P, Lucke S, von Wnuck Lipinski K, et al. Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis. Circ Res. 2011;108(3):314–23.

    Article  CAS  PubMed  Google Scholar 

  40. Moon MH, Jeong JK, Lee JH, et al. Antiobesity activity of a sphingosine 1-phosphate analogue FTY720 observed in adipocytes and obese mouse model. Exp Mol Med. 2012;44(10):603–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cantrell Stanford J, Morris AJ, Sunkara M, et al. Sphingosine 1-phosphate (S1P) regulates glucose-stimulated insulin secretion in pancreatic beta cells. J Biol Chem. 2012;287(16):13457–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kihara A, Mitsutake S, Mizutani Y, et al. Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res. 2007;46(2):126–44.

    Article  CAS  PubMed  Google Scholar 

  43. Sawaya RA et al. Vitamin, mineral, and drug absorption following bariatric surgery. Curr Drug Metab. 2012;13(9):1345–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003;100(14):8466–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sacks J et al. Effect of Roux-en-Y gastric bypass on liver mitochondrial dynamics in a rat model of obesity. Physiol Rep. 2018:6(4).

  46. Koves TR, Li P, An J, et al. Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem. 2005;280(39):33588–98.

    Article  CAS  PubMed  Google Scholar 

  47. Michael LF, Wu Z, Cheatham RB, et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci U S A. 2001;98(7):3820–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Musi N, Fujii N, Hirshman MF, et al. AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes. 2001;50(5):921–7.

    Article  CAS  PubMed  Google Scholar 

  49. Winder WW. AMP-activated protein kinase: possible target for treatment of type 2 diabetes. Diabetes Technol Ther. 2000;2(3):441–8.

    Article  CAS  PubMed  Google Scholar 

  50. Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Phys. 1999;277(1 Pt 1):E1–10.

    CAS  Google Scholar 

  51. Witczak CA, Sharoff CG, Goodyear LJ. AMP-activated protein kinase in skeletal muscle: from structure and localization to its role as a master regulator of cellular metabolism. Cell Mol Life Sci. 2008;65(23):3737–55.

    Article  CAS  PubMed  Google Scholar 

  52. Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004;429(6993):771–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bordone L, Motta MC, Picard F, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 2006;4(2):e31.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the American Society of Metabolic and Bariatric Surgery, the National Institute of Diabetes and Digestive and Kidney Diseases (DK108089), internal funding from the Cleveland Clinic Research Program Committee (#2010-1009), and the Louisiana Clinical and Translational Science Center (U54 GM104940).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Kirwan.

Ethics declarations

All experiments were approved by the Institutional Animal Care and Use Committee.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval Statement

All applicable institutional and/or national guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Aminian, A., Hassan, M. et al. Gastric Bypass Surgery Improves the Skeletal Muscle Ceramide/S1P Ratio and Upregulates the AMPK/ SIRT1/ PGC-1α Pathway in Zucker Diabetic Fatty Rats. OBES SURG 29, 2158–2165 (2019). https://doi.org/10.1007/s11695-019-03800-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-019-03800-z

Keywords

Navigation