Skip to main content

Advertisement

Log in

Bariatric Surgery and the Central Nervous System

  • Review
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Bariatric procedures are now known to have an effect on hunger as well as on metabolism. The role of central nervous pathways in causing these effects after bariatric surgery is now being elucidated. A brief overview of these pathways has been presented for the sake of bariatric surgeons. A PubMed search was made using various search phrases to retrieve all original articles concerning the effect of bariatric surgery on the neural pathways. The mechanisms regulating the food intake and energy expenditure can be broadly divided into homeostatic and hedonic systems. The effect of bariatric surgery on the homeostatic system in animal models is not clear. A decrease in preference for sweet taste and high calorie foods has been demonstrated in animal models. The effect of bariatric surgery on the hedonic system in humans has been consistent with decreased activation of the hedonic system being demonstrated by functional MRI and decreased preference for intake of high energy foods also being observed post-surgery. The effect of bariatric surgery on dopamine signaling, which is involved in the hedonic system, is however not clear. Functional MRI studies have also demonstrated increased activation of the hypothalamus after surgery. Various studies utilizing questionnaires have demonstrated increased satiety and decreased hunger after bariatric surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hetherington AW, Ranson SW. Hypothalamic lesions and adiposity in the rat. The Anatomical Record. 1940;78:149–72.

    Google Scholar 

  2. Dhillon H, Zigman JM, Ye C, et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron. 2006;49:191–203.

    Article  PubMed  CAS  Google Scholar 

  3. Balthasar N. Genetic dissection of neuronal pathways controlling energy homeostasis. Obesity (Silver Spring). 2006;14 Suppl 5:222S–7S.

    Article  CAS  Google Scholar 

  4. Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci. 2001;2:119–28.

    Article  PubMed  CAS  Google Scholar 

  5. Barrot M, Olivier JD, Perrotti LI, et al. CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc Natl Acad Sci U S A. 2002;99:11435–40.

    Article  PubMed  CAS  Google Scholar 

  6. Wang GJ, Volkow ND, Logan J, et al. Brain dopamine and obesity. Lancet. 2001;357:354–7.

    Article  PubMed  CAS  Google Scholar 

  7. Stoeckel LE, Weller RE, Cook 3rd EW, et al. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. NeuroImage. 2008;41:636–47.

    Article  PubMed  Google Scholar 

  8. Stice E, Spoor S, Bohon C, et al. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science. 2008;322(5900):449–52.

    Article  PubMed  CAS  Google Scholar 

  9. Rothemund Y, Preuschhof C, Bohner G, et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. NeuroImage. 2007;37:410–21.

    Article  PubMed  Google Scholar 

  10. Rosenbaum M, Sy M, Pavlovich K, et al. Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J Clin Invest. 2008;118:2583–91.

    PubMed  CAS  Google Scholar 

  11. Dzaja A, Dalal MA, Himmerich H, et al. Sleep enhances nocturnal plasma ghrelin levels in healthy subjects. Am J Physiol Endocrinol Metab. 2004;286:E963–7.

    Article  PubMed  CAS  Google Scholar 

  12. Shiiya T, Nakazato M, Mizuta M, et al. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metab. 2002;87:240–4.

    Article  PubMed  CAS  Google Scholar 

  13. Yildiz BO, Suchard MA, Wong ML, et al. Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc Natl Acad Sci U S A. 2004;101:10434–9.

    Article  PubMed  CAS  Google Scholar 

  14. Date Y, Murakami N, Toshinai K, et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology. 2002;123:1120–8.

    Article  PubMed  CAS  Google Scholar 

  15. Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.

    Article  PubMed  CAS  Google Scholar 

  16. Cowley MA, Smith RG, Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37:649–61.

    Article  PubMed  CAS  Google Scholar 

  17. Karamanakos SN, Vagenas K, Kalfarentzos F, et al. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann Surg. 2008;247:401–7.

    Article  PubMed  Google Scholar 

  18. Adrian TE, Ferri GL, Bacarese-Hamilton AJ, et al. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89:1070–7.

    PubMed  CAS  Google Scholar 

  19. Di Francesco V, Zamboni M, Dioli A, et al. Delayed postprandial gastric emptying and impaired gallbladder contraction together with elevated cholecystokinin and peptide YY serum levels sustain satiety and inhibit hunger in healthy elderly persons. J Gerontol A Biol Sci Med Sci. 2005;60:1581–5.

    Article  PubMed  Google Scholar 

  20. Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature. 2002;418:650–4.

    Article  PubMed  CAS  Google Scholar 

  21. Acuna-Goycolea C, van den Pol AN. Peptide YY(3–36) inhibits both anorexigenic proopiomelanocortin and orexigenic neuropeptide Y neurons: implications for hypothalamic regulation of energy homeostasis. J Neurosci. 2005;25:10510–9.

    Article  PubMed  CAS  Google Scholar 

  22. Korner J, Inabnet W, Febres G, et al. Prospective study of gut hormone and metabolic changes after adjustable gastric banding and Roux-en-Y gastric bypass. Int J Obes (Lond). 2009;33:786–95.

    Article  CAS  Google Scholar 

  23. Peterli R, Wolnerhanssen B, Peters T, et al. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann Surg. 2009;250:234–41.

    Article  PubMed  Google Scholar 

  24. Hedberg J, Hedenstrom H, Karlsson FA, et al. Gastric emptying and postprandial PYY response after biliopancreatic diversion with duodenal switch. Obes Surg. 2011;21:609–15.

    Article  PubMed  Google Scholar 

  25. Plum L, Ahmed L, Febres G, et al. Comparison of glucostatic parameters after hypocaloric diet or bariatric surgery and equivalent weight loss. Obesity (Silver Spring). 2011;19:2149–57.

    Article  CAS  Google Scholar 

  26. Chandarana K, Gelegen C, Karra E, et al. Diet and gastrointestinal bypass-induced weight loss: the roles of ghrelin and peptide YY. Diabetes. 2011;60:810–8.

    Article  PubMed  CAS  Google Scholar 

  27. le Roux CW, Aylwin SJ, Batterham RL, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243:108–14.

    Article  PubMed  Google Scholar 

  28. le Roux CW, Welbourn R, Werling M, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246:780–5.

    Article  PubMed  Google Scholar 

  29. Fekete C, Singru PS, Sanchez E, et al. Differential effects of central leptin, insulin, or glucose administration during fasting on the hypothalamic–pituitary–thyroid axis and feeding-related neurons in the arcuate nucleus. Endocrinology. 2006;147:520–9.

    Article  PubMed  CAS  Google Scholar 

  30. Gavrila A, Chan JL, Miller LC, et al. Circulating melanin-concentrating hormone, agouti-related protein, and alpha-melanocyte-stimulating hormone levels in relation to body composition: alterations in response to food deprivation and recombinant human leptin administration. J Clin Endocrinol Metab. 2005;90:1047–54.

    Article  PubMed  CAS  Google Scholar 

  31. Singru PS, Sanchez E, Fekete C, et al. Importance of melanocortin signaling in refeeding-induced neuronal activation and satiety. Endocrinology. 2007;148:638–46.

    Article  PubMed  CAS  Google Scholar 

  32. Kelesidis T, Kelesidis I, Chou S, et al. Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Intern Med. 2010;152:93–100.

    PubMed  Google Scholar 

  33. Buettner C, Muse ED, Cheng A, et al. Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat Med. 2008;14:667–75.

    Article  PubMed  CAS  Google Scholar 

  34. Minokoshi Y, Haque MS, Shimazu T. Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats. Diabetes. 1999;48:287–91.

    Article  PubMed  CAS  Google Scholar 

  35. Pinto S, Roseberry AG, Liu H, et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science. 2004;304:110–5.

    Article  PubMed  CAS  Google Scholar 

  36. Caro JF, Kolaczynski JW, Nyce MR, et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet. 1996;348:159–61.

    Article  PubMed  CAS  Google Scholar 

  37. Meguid MM, Glade MJ, Middleton FA. Weight regain after Roux-en-Y: a significant 20 % complication related to PYY. Nutrition. 2008;24:832–42.

    Article  PubMed  CAS  Google Scholar 

  38. Spranger J, Verma S, Gohring I, et al. Adiponectin does not cross the blood–brain barrier but modifies cytokine expression of brain endothelial cells. Diabetes. 2006;55:141–7.

    Article  PubMed  CAS  Google Scholar 

  39. Donahey JC, van Dijk G, Woods SC, et al. Intraventricular GLP-1 reduces short- but not long-term food intake or body weight in lean and obese rats. Brain Res. 1998;779:75–83.

    Article  PubMed  CAS  Google Scholar 

  40. Baraboi ED, St-Pierre DH, Shooner J, et al. Brain activation following peripheral administration of the GLP-1 receptor agonist exendin-4. Am J Physiol Regul Integr Comp Physiol. 2011;301:R1011–24.

    Article  PubMed  CAS  Google Scholar 

  41. Knauf C, Cani PD, Kim DH, et al. Role of central nervous system glucagon-like peptide-1 receptors in enteric glucose sensing. Diabetes. 2008;57:2603–12.

    Article  PubMed  CAS  Google Scholar 

  42. Burmeister MA, Ferre T, Ayala JE, et al. Acute activation of central GLP-1 receptors enhances hepatic insulin action and insulin secretion in high-fat-fed, insulin resistant mice. Am J Physiol Endocrinol Metab. 2012;302(3):E334–43.

    Article  PubMed  CAS  Google Scholar 

  43. Ma X, Bruning J, Ashcroft FM. Glucagon-like peptide 1 stimulates hypothalamic proopiomelanocortin neurons. J Neurosci. 2007;27:7125–9.

    Article  PubMed  CAS  Google Scholar 

  44. Boschmann M, Engeli S, Dobberstein K, et al. Dipeptidyl-peptidase-IV inhibition augments postprandial lipid mobilization and oxidation in type 2 diabetic patients. J Clin Endocrinol Metab. 2009;94:846–52.

    Article  PubMed  CAS  Google Scholar 

  45. Elias CF, Kelly JF, Lee CE, et al. Chemical characterization of leptin-activated neurons in the rat brain. J Comp Neurol. 2000;423:261–81.

    Article  PubMed  CAS  Google Scholar 

  46. Valverde I, Puente J, Martin-Duce A, et al. Changes in glucagon-like peptide-1 (GLP-1) secretion after biliopancreatic diversion or vertical banded gastroplasty in obese subjects. Obes Surg. 2005;15:387–97.

    Article  PubMed  Google Scholar 

  47. Hommel JD, Trinko R, Sears RM, et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron. 2006;51:801–10.

    Article  PubMed  CAS  Google Scholar 

  48. Farooqi IS, Bullmore E, Keogh J, et al. Leptin regulates striatal regions and human eating behavior. Science. 2007;317:1355.

    Article  PubMed  CAS  Google Scholar 

  49. Abizaid A, Liu ZW, Andrews ZB, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116:3229–39.

    Article  PubMed  CAS  Google Scholar 

  50. Diano S, Farr SA, Benoit SC, et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci. 2006;9:381–8.

    Article  PubMed  CAS  Google Scholar 

  51. Jerlhag E, Egecioglu E, Dickson SL, et al. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol. 2007;12:6–16.

    Article  PubMed  CAS  Google Scholar 

  52. Naleid AM, Grace MK, Cummings DE, et al. Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides. 2005;26:2274–9.

    Article  PubMed  CAS  Google Scholar 

  53. Malik S, McGlone F, Bedrossian D, et al. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008;7:400–9.

    Article  PubMed  CAS  Google Scholar 

  54. Bueter M, le Roux CW. Gastrointestinal hormones, energy balance and bariatric surgery. Int J Obes (Lond). 2011;35 Suppl 3:S35–9.

    Article  CAS  Google Scholar 

  55. Rao RS, Rao V, Kini S. Animal models in bariatric surgery—a review of the surgical techniques and postsurgical physiology. Obes Surg. 2010;20:1293–305.

    Article  PubMed  Google Scholar 

  56. Romanova IV, Ramos EJ, Xu Y, et al. Neurobiologic changes in the hypothalamus associated with weight loss after gastric bypass. J Am Coll Surg. 2004;199:887–95.

    Article  PubMed  Google Scholar 

  57. Nadreau E, Baraboi ED, Samson P, et al. Effects of the biliopancreatic diversion on energy balance in the rat. Int J Obes (Lond). 2006;30:419–29.

    Article  CAS  Google Scholar 

  58. Wang Y, Liu J. Plasma ghrelin modulation in gastric band operation and sleeve gastrectomy. Obes Surg. 2009;19:357–62.

    Article  PubMed  Google Scholar 

  59. Li JV, Ashrafian H, Bueter M, et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut. 2011;60:1214–23.

    Article  PubMed  CAS  Google Scholar 

  60. Sonoda EY, Gomes da Silva S, Arida RM, et al. Hippocampal plasticity in rats submitted to a gastric restrictive procedure. Nutr Neurosci. 2011;14:181–5.

    Article  PubMed  CAS  Google Scholar 

  61. Shin AC, Zheng H, Pistell PJ, et al. Roux-en-Y gastric bypass surgery changes food reward in rats. Int J Obes (Lond). 2011;35:642–51.

    Article  CAS  Google Scholar 

  62. Dunn JP, Cowan RL, Volkow ND, et al. Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Brain Res. 2010;1350:123–30.

    Article  PubMed  CAS  Google Scholar 

  63. Steele KE, Prokopowicz GP, Schweitzer MA, et al. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg. 2010;20:369–74.

    Article  PubMed  Google Scholar 

  64. Bruce JM, Hancock L, Bruce A, et al. Changes in brain activation to food pictures after adjustable gastric banding. Surg Obes Relat Dis. 2011.

  65. Ochner CN, Kwok Y, Conceicao E, et al. Selective reduction in neural responses to high calorie foods following gastric bypass surgery. Ann Surg. 2011;253:502–7.

    Article  PubMed  Google Scholar 

  66. van de Sande-Lee S, Pereira FR, Cintra DE, et al. Partial reversibility of hypothalamic dysfunction and changes in brain activity after body mass reduction in obese subjects. Diabetes. 2011;60:1699–704.

    Article  PubMed  Google Scholar 

  67. Halmi KA, Mason E, Falk JR, et al. Appetitive behavior after gastric bypass for obesity. Int J Obes. 1981;5:457–64.

    PubMed  CAS  Google Scholar 

  68. Thomas JR, Marcus E. High and low fat food selection with reported frequency intolerance following Roux-en-Y gastric bypass. Obes Surg. 2008;18:282–7.

    Article  PubMed  Google Scholar 

  69. Brown EK, Settle EA, Van Rij AM. Food intake patterns of gastric bypass patients. J Am Diet Assoc. 1982;80:437–43.

    PubMed  CAS  Google Scholar 

  70. Kenler HA, Brolin RE, Cody RP. Changes in eating behavior after horizontal gastroplasty and Roux-en-Y gastric bypass. Am J Clin Nutr. 1990;52:87–92.

    PubMed  CAS  Google Scholar 

  71. Olbers T, Bjorkman S, Lindroos A, et al. Body composition, dietary intake, and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg. 2006;244:715–22.

    Article  PubMed  Google Scholar 

  72. Scruggs DM, Buffington C, Cowan Jr GS. Taste acuity of the morbidly obese before and after gastric bypass surgery. Obes Surg. 1994;4:24–8.

    Article  PubMed  Google Scholar 

  73. Burge JC, Schaumburg JZ, Choban PS, et al. Changes in patients' taste acuity after Roux-en-Y gastric bypass for clinically severe obesity. J Am Diet Assoc. 1995;95:666–70.

    Article  PubMed  CAS  Google Scholar 

  74. Shimura T, Imaoka H, Okazaki Y, et al. Involvement of the mesolimbic system in palatability-induced ingestion. Chem Senses. 2005;30 Suppl 1:i188–9.

    Article  PubMed  Google Scholar 

  75. Schultes B, Ernst B, Wilms B, et al. Hedonic hunger is increased in severely obese patients and is reduced after gastric bypass surgery. Am J Clin Nutr. 2010;92:277–83.

    Article  PubMed  CAS  Google Scholar 

  76. Batterham RL, Ffytche DH, Rosenthal JM, et al. PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature. 2007;450:106–9.

    Article  PubMed  CAS  Google Scholar 

  77. Thirlby RC, Bahiraei F, Randall J, et al. Effect of Roux-en-Y gastric bypass on satiety and food likes: the role of genetics. J Gastrointest Surg. 2006;10:270–7.

    Article  PubMed  Google Scholar 

  78. Kalarchian MA, Wilson GT, Brolin RE, et al. Effects of bariatric surgery on binge eating and related psychopathology. Eat Weight Disord. 1999;4:1–5.

    PubMed  CAS  Google Scholar 

  79. Laurenius A, Larsson I, Bueter M, et al. Changes in eating behaviour and meal pattern following Roux-en-Y gastric bypass. Int J Obes (Lond). 2012;36(3):348–55. doi:10.1038/ijo.2011.217.

    Article  CAS  Google Scholar 

  80. Morrow J, Gluck M, Lorence M, et al. Night eating status and influence on body weight, body image, hunger, and cortisol pre- and post-Roux-en-Y gastric bypass (RYGB) surgery. Eat Weight Disord. 2008;13:e96–9.

    PubMed  CAS  Google Scholar 

  81. Burgmer R, Grigutsch K, Zipfel S, et al. The influence of eating behavior and eating pathology on weight loss after gastric restriction operations. Obes Surg. 2005;15:684–91.

    Article  PubMed  Google Scholar 

  82. Bueter M, Miras AD, Chichger H, et al. Alterations of sucrose preference after Roux-en-Y gastric bypass. Physiol Behav. 2011;104:709–21.

    Article  PubMed  CAS  Google Scholar 

  83. Tichansky DS, Glatt AR, Madan AK, et al. Decrease in sweet taste in rats after gastric bypass surgery. Surg Endosc. 2011;25:1176–81.

    Article  PubMed  Google Scholar 

  84. Hajnal A, Kovacs P, Ahmed T, et al. Gastric bypass surgery alters behavioral and neural taste functions for sweet taste in obese rats. Am J Physiol Gastrointest Liver Physiol. 2010;299:G967–79.

    Article  PubMed  CAS  Google Scholar 

  85. Mathes CM, Bueter M, Smith KR, et al. Roux-en-Y gastric bypass in rats increases sucrose taste-related motivated behavior independent of pharmacological GLP-1-receptor modulation. Am J Physiol Regul Integr Comp Physiol. 2012;302(6):R751–67.

    Article  PubMed  CAS  Google Scholar 

  86. le Roux CW, Bueter M, Theis N, et al. Gastric bypass reduces fat intake and preference. Am J Physiol Regul Integr Comp Physiol. 2011;301:R1057–66.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

Dr. Raghavendra Rao declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavendra S. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, R.S. Bariatric Surgery and the Central Nervous System. OBES SURG 22, 967–978 (2012). https://doi.org/10.1007/s11695-012-0649-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-012-0649-5

Keywords

Navigation