Skip to main content
Log in

Effect of drying methods on the nutritional and phytochemical properties of pumpkin flower (Cucurbita maxima) and its characterization

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Flowers have long been used culturally for their aesthetical and aromatic properties but now a day edible flowers are gaining importance because of their bioactive potential. Additionally, flowers are the most accessible, least expensive source from plants, and in the case of pumpkin, the male flower’s function is limited to pollination only. Therefore, this study is aimed to assess a suitable method (tray, shade, microwave, and sun drying) of drying for pumpkin flowers depending on the effect of each drying technique on the nutritional, phytochemical, and antioxidant activity. The best-suited drying method for pumpkin flowers was characterized by using X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), zeta potential and size distribution parameters. The values for ash content (14.7 ± 0.28%), protein (3.58 ± 0.01%), and energy (357.33 ± 1.42 Cal/g) were found to be higher for shade-dried samples. All the drying techniques have affected the phytochemical composition and antioxidant activity of pumpkin flowers but the tray-dried and shade-dried techniques have retained most of the antioxidants namely total phenolic content, total flavonoid, carotenoid, and their activity (FRAP, ABTS, and FRSA). The shade dried sample among all the dried samples was concluded to be the suitably dried sample and has been identified to have amorphous nature (2θ = 22.85°), good solubility, and particle size 878.8 nm distribution in its suspension, particle's surface potential i.e. − 19.0 mV, (Tonset) = 33.68 °C, end temperature (Tendset) = 85.36 °C, denaturation peak temperature (Tpeak) = 58.84 °C and ∆H = 86.7148 J/g indicating good thermal stability. The obtained results indicate that pumpkin flower powder could be a potential source for the development of functional and value-added food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. F. Rezende, D. Sande, A.C. Coelho, G. Oliveira, M.A. Boaventura, J.A. Takahashi, Chem. Eng. Trans. (2019). https://doi.org/10.3303/CET1975057

    Article  Google Scholar 

  2. S. Benvenuti, M. Mazzoncini, Front. Plant Sci. (2021). https://doi.org/10.3389/fpls.2020.569499

    Article  PubMed  PubMed Central  Google Scholar 

  3. A.I. Gostin, V.Y. Waisundara, Trends Food Sci. Technol. (2019). https://doi.org/10.1016/j.tifs.2019.02.015

    Article  Google Scholar 

  4. G. Ahmad, A.A. Khan, Int. J. Hortic. Agric. (2019). https://doi.org/10.15226/2572-3154/4/1/00124

    Article  Google Scholar 

  5. D. Richter, S. Abarzua, M. Chrobak, T. Vrekoussis, T. Weissenbacher, C. Kuhn, S. Schulze, M.S. Kupka, K. Friese, V. Briese, B. Piechulla, A. Makrigiannakis, U. Jeschke, D. Dian, Nutr. Cancer. (2013). https://doi.org/10.1080/01635581.2013.797000

    Article  PubMed  Google Scholar 

  6. M. Kujawska, A. Pieroni, Ecol. Food Nutr. (2015). https://doi.org/10.1080/03670244.2014.983498

    Article  PubMed  Google Scholar 

  7. C. Vijayakumar, M. Ramesh, A. Murugesan, N. Panneerselvam, D. Subramaniam, M. Bharathiraja, Environ. Sci. Pollut. Res. (2016). https://doi.org/10.1007/s11356-016-7754-2

    Article  Google Scholar 

  8. E.A. Peter, N. Hudson, O.N. Alice, O. Stanley, T. William, A.S. Ijani, S. Anne, Afr. J. Food Sci. Technol. 4(10), 221–228 (2013)

  9. E.C. Chatt, P. von Aderkas, C.J. Carter, D. Smith, M. Elliott, B.J. Nikolau, Front. Plant Sci. (2018). https://doi.org/10.3389/fpls.2018.00860

    Article  PubMed  PubMed Central  Google Scholar 

  10. G. Chomicki, H. Schaefer, S.S. Renner, New Phytol. (2020). https://doi.org/10.1111/nph.16015

    Article  PubMed  Google Scholar 

  11. P. Ghosh, S.S. Rana, SN Appl. Sci. (2021). https://doi.org/10.1007/s42452-020-04092-0

    Article  Google Scholar 

  12. R.V. Martins, A.M. Silva, A.P. Duarte, S. Socorro, S. Correia, C.J. Maia, Biochemistry (2021). https://doi.org/10.3390/biochem1030011

    Article  Google Scholar 

  13. B. Salehi, L. Machin, L. Monzote, J. Sharifi-Rad, S.M. Ezzat, M.A. Salem, W.C. Cho, ACS Omega (2020). https://doi.org/10.1021/acsomega.0c01818

    Article  PubMed  PubMed Central  Google Scholar 

  14. D. Nayak, S. Ashe, P.R. Rauta, B. Nayak, J. Appl. Biomed. (2017). https://doi.org/10.1016/j.jab.2016.10.005

    Article  Google Scholar 

  15. C.Z. Liang, X. Zhang, H. Li, Y.Q. Tao, L.J. Tao, Z.R. Yang, X.P. Zhou, Z.L. Shi, H.M. Tao, Cancer Biother. Radiopharm. (2012). https://doi.org/10.1089/cbr.2012.1245

    Article  PubMed  PubMed Central  Google Scholar 

  16. T. Grant, S. Ingerd, G.G. Federico, Sci. Nutr. (2021). https://doi.org/10.1080/10408398.2020.1765309

    Article  Google Scholar 

  17. R. Raval, S. Jayswal, B. Maitrey, Int. J. Appl. Sci. Eng. (2020). https://doi.org/10.22214/ijraset.2020.6261

    Article  Google Scholar 

  18. A. Matouk, M. El-Kholy, A. Tharwat, M. Sadat, J. Soil Sci. Agric. Eng. 7, 221 (2016)

    Google Scholar 

  19. AOAC, Official Methods of Analysis. Association of Official Analytical Chemists, 20th ed. (AOAC, Washington, 2016)

  20. C.M.C. Kennath, L.Y. Michelle, K.N. Wendy, Determination of calories in food via adiabatic bomb calorimeter. Corinthian 6, 92–101 (2004)

    Google Scholar 

  21. J. Singh, B.S. Inbaraj, S. Kaur, P. Rasane, V. Nanda, Agron. Res. (2022). https://doi.org/10.3390/agronomy12040777

    Article  Google Scholar 

  22. J. Zheng, Y. Xiaoming, M. Meenu, B. Xu, Int. J. Food Prop. (2018). https://doi.org/10.1080/10942912.2018.1494195

    Article  Google Scholar 

  23. P. Shah, H.A. Modi, Int. J. Res. Appl. Sci. Eng. Technol. 3, 636 (2015)

    Google Scholar 

  24. I.E. Martínez, A.M.J.I. Calatayud, C. Cannata, F. Basile, A. Abdelkhalik, S. Soler, J.V. Valcárcel, M.R. Martínez-Cuenca, Foods (2022). https://doi.org/10.3390/foods11030423

    Article  PubMed  PubMed Central  Google Scholar 

  25. P. Chawla, A. Najda, A. Bains, R. Nurzyńska-Wierdak, R. Kaushik, M.M. Tosif, Nanomaterials (2021). https://doi.org/10.3390/nano11051308

    Article  PubMed  PubMed Central  Google Scholar 

  26. V. Kumar, R. Kushwaha, A. Goyal, B. Tanwar, J. Kaur, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2017.10.089

    Article  PubMed  Google Scholar 

  27. P. Chawla, V. Kumar, A. Bains, R. Singh, P.K. Sadh, R. Kaushik, N. Kumar, J. Am. Coll. Nutr. (2020). https://doi.org/10.1080/07315724.2020.1718031

    Article  PubMed  Google Scholar 

  28. Y. Suhag, G.A. Nayik, I.K. Karabagias, V. Nanda, Foods (2021). https://doi.org/10.3390/foods10010162

    Article  PubMed  PubMed Central  Google Scholar 

  29. N.G. Inmaculada, B. González, G.V. Rocío, B.O. Verónica, P. Ana, J. Maria, Int. J. Mol. Sci. (2015). https://doi.org/10.3390/ijms16010805

    Article  Google Scholar 

  30. A.N. Razak, A.R. Razak, A. Shaari, F. Nat, S. Sriyana, A. Sriyana, J. Acad. Ind. Res.  2(6), 1473–2319 (2014)

  31. L. Punathil, T. Basak,Microwave Processing of Frozen and Packaged Food Materials (Elsevier, Amsterdam, 2016). https://doi.org/10.1016/B978-0-08-100596-5.21009-3

  32. H.C. Chien, F. Adam, S. Antoni, W. Aneta, L.C. Bee, H.K. Chun, C.Y. Ma, Aromatic Herbs in Food (Academic Press, London, 2021). https://doi.org/10.1016/B978-0-12-822716-9.00005-6

  33. A. Singh, B. Dhaduk, Indian J. Plant Physiol. 9(4), 383 (2004)

    Google Scholar 

  34. P. Singhal, S. Satya, S.N. Naik, J Afres. (2022). https://doi.org/10.1016/j.afres.2021.100036

    Article  Google Scholar 

  35. J.S. Alakali, C.T. Kucha, I.A. Rabiu, Afr. J. Food Sci. (2015). https://doi.org/10.5897/AJFS2014.1145

    Article  Google Scholar 

  36. I.H. Mondal, L. Rangan, R.V. Uppaluri, Heliyon (2019). https://doi.org/10.1016/j.heliyon.2019.e02934

    Article  PubMed  PubMed Central  Google Scholar 

  37. P.F. Mathad, U. Kumar, H. Sharanagouda, N. Naik, R.T. Ramappa, A. Prabhuraj, J. Agric. Eng. 43(2), 1–10 (2019)

  38. W. Sui, T. Mu, H. Sun, H. Yang, J. Food Process. Preserv. (2019). https://doi.org/10.1111/jfpp.13884

    Article  Google Scholar 

  39. Z.N. Garba, S. Oviosa, J. Taibah Univ. Sci. (2019). https://doi.org/10.1080/16583655.2019.1582148

    Article  Google Scholar 

  40. C. Madhu, K. Krishna, K. Reddy, P. Lakshmi, E. Kelari, Int. J. Pharm. Res. Health Sci. (2017). https://doi.org/10.21276/ijprhs.2017.03.04

    Article  Google Scholar 

  41. M.Y. Siti, M.R. Salleh, R. Antora, Food Res. (2018). https://doi.org/10.26656/fr.2017.2(5).083

    Article  Google Scholar 

  42. M. Meyerzon, The effects of heat on protein food (2012). http://www.ehow.com/facts_5918561_effects-heat-protein-food.html

  43. A. Janine, The general effects of heat on the protein in foods (2011). http://www.livestrong.com/article/493890-the-general-effects-of-heat-on-the-protein-in-foods

  44. B. Amoasah, F. Appiah, P. Kumah, Int. J. Plant Soil Sci. (2018). https://doi.org/10.9734/IJPSS/2018/38550

    Article  Google Scholar 

  45. V.F. Abioye, J.A. Adejuyitan, C.F. Idowu, Agric. Biol. J. N. Am. (2020). https://doi.org/10.5251/abjna.2014.5.3.104.108

    Article  Google Scholar 

  46. M.A. Ali, Y.A. Yusof, N.L. Chin, M.N. Ibrahim, J. Food Process Eng. (2017). https://doi.org/10.1111/jfpe.12583

    Article  Google Scholar 

  47. L.H. Ho, M.A. Suhaimi, I. Ismail, K.A. Mustafa, J. Agric. Biotechnol. 6, 96 (2016)

    Google Scholar 

  48. C.Z. Chen, Z. Wuyi, Z. Shan, C. Zhang, T. Dong, Z. Feng, C. Wang, Food Sci. Nutr. (2022). https://doi.org/10.1002/fsn3.2699

    Article  PubMed  PubMed Central  Google Scholar 

  49. R. Lemus-Mondaca, K. Ah-Hen, A. Vega-Gálvez, C. Honores, N.O. Moraga, Plant Foods Hum. Nutr. (2016). https://doi.org/10.1007/s11130-015-0524-3

    Article  PubMed  Google Scholar 

  50. K.C. Selvi, A. Kabutey, G.A.K. Gürdil, D. Herak, S. Kurhan, P. Klouček, Plants (2020). https://doi.org/10.3390/plants9020236

    Article  PubMed  PubMed Central  Google Scholar 

  51. J. Dorozk, D. Kunkulberga, I. Sivicka, Z. Kruma, Food Blast. (2019). https://doi.org/10.22616/FoodBalt.2019.045

    Article  Google Scholar 

  52. S. Roshanak, M. Rahimmalek, S.A. Goli, J. Food Sci. Technol. (2016). https://doi.org/10.1007/s13197-015-2030-x

    Article  PubMed  Google Scholar 

  53. M. Rabeta, S. Lai, Int. Food Res. J. 20, 1601 (2013)

    Google Scholar 

  54. L. Qiu, M. Zhang, R. Ju, Y. Wang, B. Chitrakar, B. Wang, Dry. Technol. (2020). https://doi.org/10.1080/07373937.2019.1653318

    Article  Google Scholar 

  55. F. Şahin, P. Ülger, T. Aktas, H. Orak, Agric. Mach. Sci. 6(1), 71–78 (2010)

    Google Scholar 

  56. X. Jin, T. Oliviereo, R. Sman, R. Verkerk, M. Dekker, Food Sci. Technol. (2014). https://doi.org/10.1016/j.lwt.2014.05.031

    Article  Google Scholar 

  57. X.F. Shi, J.Z. Chu, Y.F. Zhang, C.Q. Liu, X.Q. Yao, Ind. Crops Prod. (2017). https://doi.org/10.1016/j.indcrop.2017.04.021

    Article  Google Scholar 

  58. L. Fernandes, S. Casal, J.A. Pereira, J.A. Saraiva, E. Ramalhosa, Braz. J. Food Res. (2018). https://doi.org/10.1590/1981-6723.21117

    Article  Google Scholar 

  59. O. García-Valladares, A.M. Lucho-Gómez, E.A. Montiel-Baltazar, M. Castañeda-Vázquez, C.A. Ortiz-Sánchez, B. Castillo-Téllez, A. Domínguez-Niño, Plant Foods Hum. Nutr. (2022). https://doi.org/10.1007/s11130-022-01032-8

    Article  PubMed  Google Scholar 

  60. M. Masresha, T. Paulos, L. Arnaud, C. Stanley, B. Kaleab, Food Sci. Nutr. (2021). https://doi.org/10.1002/fsn3.2324

    Article  Google Scholar 

  61. S.S. Kumar, P. Manoj, N.P. Shetty, P. Giridhar, J. Sci. Food Agric. (2015). https://doi.org/10.1002/jsfa.6879

    Article  PubMed  Google Scholar 

  62. A. Ling, S. Yasir, P. Matanjun, B. Abu, F. Mohd, J. Appl. Phycol. (2014). https://doi.org/10.1007/s10811-014-0467-3

    Article  Google Scholar 

  63. V.T. Nguyen, Q. Van Vuong, M.C. Bowyer, I.A. Van Altena, C.J. Scarlett, Dry. Technol. (2015). https://doi.org/10.17660/ActaHortic.2018.1213.46

    Article  Google Scholar 

  64. M.K. Youssef, M.S. Mokhtar, J. Nutr. Food Sci. (2014). https://doi.org/10.4172/2155-9600.1000322

    Article  Google Scholar 

  65. A. Stefaniak, M. Grzeszczuk, Folia Pomer Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. (2020). https://doi.org/10.21005/AAPZ2020.53.1.02

    Article  Google Scholar 

  66. D.W. Dadi, S.A. Emire, A.D. Hagos, F.T. Assamo, J. Pharmacogn. Phytochem. 7, 962 (2018)

    CAS  Google Scholar 

  67. M. Thilak, Q. Haiou, V.H. Desiree, M.A. Siyam, P. Angel, I. Taylor, in Nanomaterials for Food Applications (Elsevier, Amsterdam, 2019). https://doi.org/10.1016/B978-0-12-814130-4.00011-7

  68. T. Varadavenkatesan, R. Selvaraj, R. Vinayagam, Int. J. Environ. Sci. Technol. (2019). https://doi.org/10.1007/s13762-018-1850-4

    Article  Google Scholar 

  69. C. Acikgoz, Chem. Asian J. 23(1), 149–152 (2010)

  70. B.D.N. Asep, O.R.R. Rosi, Indones J. Sci. Technol. (2019). https://doi.org/10.17509/ijost.v4i.15806

    Article  Google Scholar 

  71. S.R.F. Melo-Silveira, P. Fidelis, M.S.S.P. Costa, C.B.S. Telles, S.N. Dantas, S.O. Elias, V.B. Riberio, A.L. Barth, A.J. Macedo, E.L. Leite, Int. J. Mol. Sci. (2012). https://doi.org/10.3390/ijms13010409

    Article  Google Scholar 

  72. X. Li, S. Yi, Y. Zheng, S. He, Intell. Autom. Soft Comput. (2015). https://doi.org/10.1080/10798587.2015.1015769

    Article  Google Scholar 

  73. S. Renganathan, S. Subramaniyan, N. Karunanithi, P. Vasanthakumar, A. Kutzner, P.S. Kim, K. Heese, Antioxidants (2021). https://doi.org/10.3390/antiox10121959

    Article  PubMed  PubMed Central  Google Scholar 

  74. K.S. Katsumata, Enomae, Toshiharu, K. Iiyama, in Formation of Tracheary Elements and Deposition of Lignin in Vascular System of Flower Petals. Appita Annual Conference, vol. 3, pp. 179–182 (2005)

  75. R.A.C. Gomide, C.S.O. Ana, A.C.R. Danielle, O. Cassiano, A. Odílio, D. Marali, B. Soraia, J. Polym. Environ. (2020). https://doi.org/10.1007/s10924-020-01685-z

    Article  Google Scholar 

  76. M.P. Patil, R.D. Singh, P.B. Koli, K.T. Patil, B.S. Jagdale, A.R. Tipare, G.D. Kim, Microb. Pathog. (2018). https://doi.org/10.1016/j.micpath.2018.05.04

    Article  PubMed  Google Scholar 

  77. M. Sundrarajan, K. Bama, M. Bhavani, S. Jegatheeswaran, S. Ambika, A. Sangili, P. Nithya, R. Sumathi, J. Photochem. Photobiol. B Biol. (2017). https://doi.org/10.1016/j.jphotobiol.2017.05.003

    Article  Google Scholar 

  78. G. Gayathri, K.B. Uppuluri, Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-22482-9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Lovely Professional University, Punjab, India for providing facilities to characterize the samples for particle size, FTIR, DSC, and XRD analysis of pumpkin flower powder through the Central Instrumentation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Singh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gargi, A., Singh, J., Rasane, P. et al. Effect of drying methods on the nutritional and phytochemical properties of pumpkin flower (Cucurbita maxima) and its characterization. Food Measure 17, 5330–5343 (2023). https://doi.org/10.1007/s11694-023-02026-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02026-z

Keywords

Navigation