Skip to main content

Advertisement

Log in

Detection of bruised loquats based on reflectance, absorbance and Kubelka–Munk spectra

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Bruise is one of the main problems in the classification and processing of loquats after harvest, causing decay and deterioration of normal loquats during transportation. It reduces the economic value of the loquats and raises food quality and safety problems. Therefore, improving the identification rate of bruised loquats can effectively reduce the economic loss caused by transportation and storage. In this study, hyperspectral imaging was used to collect reflectance (R), absorbance (A), and Kubelka–Munk (KM) spectra of bruised loquats for bruised grade detection. “Gaussian” filter (GF), baseline offset correction (BOC), maximum normalization (MAN), Savitzky-Golay (SG), and multiplicative scatter correction (MSC) were used to preprocess the original spectral data. Competitive adaptive reweighted sampling (CARS), genetic algorithm (GA), successive projections algorithm (SPA), and uninformative variables elimination (UVE) were used to reduce the dimension of spectral data to obtain the characteristic wavelength. Random forest (RF), extreme learning machine (ELM), least square support vector machines (LS-SVM), and k-nearest neighbor (KNN) algorithm were used to establish the classification model of bruised grade in loquats. By optimizing the model based on all model classification results, the best model (MIX) is obtained. By comparison, the results revealed that the MIX model showed the lowest errors, better stability and generalization ability, with an accuracy of 100%. Consequently, it also provides a theoretical reference for the rapid, nondestructive, and high-precision fruit online detection technology in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Zhang, X.H. Wu, S.H. Zhang, Q.L. Cheng, Z.J. Tan, Postharvest Biol. Technol. 127, 44–52 (2017)

    Article  Google Scholar 

  2. S. Munera, J. Gómez-Sanchís, N. Aleixos, J. Vila-Francés, G. Colelli, S. Cubero, E. Soler, J. Blasco, Postharvest Biol. Technol. 171, 111356 (2021)

    Article  Google Scholar 

  3. X. Luo, T. Takahashi, K. Kyo, S.H. Zhang, J. Food Eng. 109(3), 457–466 (2012)

    Article  CAS  Google Scholar 

  4. U.L. Opara, P.B. Pathare, Postharvest Biol. Technol. 91, 9–24 (2014)

    Article  Google Scholar 

  5. J.B. Li, L.P. Chen, W.Q. Huang, Q.Y. Wang, B.H. Zhang, X. Tian, S.X. Fan, B. Li, Postharvest Biol. Technol. 112, 121–133 (2016)

    Article  CAS  Google Scholar 

  6. T.U. Rehman, M.S. Mahmud, Y.K. Chang, J. Jin, J. Shin, Comput. Electron. Agric 156, 585–605 (2019)

    Article  Google Scholar 

  7. M. Huang, R.F. Lu, Postharvest Biol. Technol. 58(3), 168–175 (2010)

    Article  Google Scholar 

  8. B. Li, Z.Y. Han, Q. Wang, Z.X. Sun, Y.D. Liu, Foods 11(16), 2444 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Y.D. Liu, M.J. Cheng, Y. Hao, J. East. China Jiaotong Univ. 35(04), 1–7 (2018)

    Google Scholar 

  10. Y.Z. Lu, W. Saeys, M. Kim, Y.K. Peng, R.F. Lu, Postharvest Biol. Technol. 170, 111318 (2020)

    Article  CAS  Google Scholar 

  11. R.P. Haff, S. Saranwong, W. Thanapase, A. Janhiran, S. Kasemsumran, S. Kawano, Postharvest Biol. Technol. 86, 23–28 (2013)

    Article  Google Scholar 

  12. J.F.I. Nturambirwe, W.J. Perold, U.L. Opara, Sensors 21(15), 4990 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  13. H.Y. Cen, R.F. Lu, Q.B. Zhu, F. Mendoza, Postharvest Biol. Technol. 111, 352–361 (2016)

    Article  Google Scholar 

  14. H.T. Wang, R. Hu, M.Y. Zhang, Z.Q. Zhai, R.Y. Zhang, J. Food Process. Eng. 44(4), e13654 (2021)

  15. S. Munera, J.M. Amigo, N. Aleixos, P. Talens, S. Cubero, J. Blasco, Food Control 86, 1–10 (2018)

    Article  CAS  Google Scholar 

  16. A. Siedliska, P. Baranowski, M. Zubik, W. Mazurek, B. Sosnowska, Postharvest Biol. Technol. 139, 115–126 (2018)

    Article  CAS  Google Scholar 

  17. S. Teerachaichayut, H.T. Ho, Postharvest Biol. Technol. 133, 20–25 (2017)

    Article  CAS  Google Scholar 

  18. A. Shams-Nateri, N. Piri, Opt. Appl. 45, 4 (2015)

    Google Scholar 

  19. Y. Makino, M. Ichimura, S. Oshita, Y. Kawagoe, H. Yamanaka, Food Chem. 121(2), 533–539 (2010)

    Article  CAS  Google Scholar 

  20. N.K. Mahanti, S.K. Chakraborty, Comput. Electron. Agric. 175, 105539 (2020)

    Article  Google Scholar 

  21. G. Reig, S. Alegre, I. Iglesias, G. Echeverría, F. Gatius, Acta Hort. 934, 1117–1125 (2012)

    Article  Google Scholar 

  22. M.L. Myrick, M.N. Simcock, M. Baranowski, H. Brooke, S.L. Morgan, J.N. McCutcheon, Appl. Spectrosc. Rev. 46(2), 140–165 (2011)

    Article  Google Scholar 

  23. P. Mishra, M. Paillart, L. Meesters, E. Woltering, A. Chauhan, Postharvest Biol. Technol. 183, 111739 (2022)

    Article  CAS  Google Scholar 

  24. B. Tan, T. Xiao, G. Li, Q. Liu, G. Li, C. Huang, H. Chen, Basic. Clin. Pharmacol. 126, 111 (2020)

    Google Scholar 

  25. W.H. Su, D.W. Sun, J.G. He, L.B. Zhang, Comput. Electron. Agric. 139, 41–55 (2017)

    Article  Google Scholar 

  26. R.R. Yuan, M. Guo, C.Y. Li, S.T. Chen, G.S. Liu, J.G. He, G.L. Wan, N.Y. Fan, Postharvest Biol. Technol. 185, 111810 (2022)

    Article  CAS  Google Scholar 

  27. R.R. Yuan, G.S. Liu, J.G. He, G.L. Wan, N.Y. Fan, Y. Li, Y.R. Sun, Comput. Electron. Agric 182, 106043 (2021)

    Article  Google Scholar 

  28. P. Martinsen, R. Oliver, R. Seelye, V.A. McGlone, T. Holmes, M. Davy, J. Johnston, I. Hallett, K. Moynihan, T. Asabe. 57(2), 565–572 (2014)

    Google Scholar 

  29. G. Polder, G.W.A.M. van der Heijden, L.C.P. Keizer, I.T. Young, J. Near Infrared Spec. 11(3), 193–210 (2003)

    Article  CAS  Google Scholar 

  30. R.R. Yuan, G.S. Liu, J.G. He, C. Ma, L.J. Cheng, N.Y. Fan, J.J. Ban, Y. Liu, Y.R. Sun, J. Food Sci. 85(5), 1403–1410 (2020)

    Article  CAS  PubMed  Google Scholar 

  31. A.A. Zaki, M. Aljarrah, A. Alkhazali, F. Salman, Mater. Technol. 37(2), 86–94 (2022)

    Article  CAS  Google Scholar 

  32. C. Marcott, G.M. Story, A.E. Dowrey, J.T. Grothaus, D.C. Oertel, I. Noda, E. Margalith, L. Nguyen, Appl. Spectrosc. 63(12), 346A–354A (2009)

    Article  CAS  PubMed  Google Scholar 

  33. T. Schmid, U. Panne, R. Niessner, C. Haisch, Anal. Chem. 81(6), 2403–2409 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. W.H. Su, D.W. Sun, Comput. Electron. Agric 130, 69–82 (2016)

    Article  Google Scholar 

  35. R. Alcaraz, I. de la Osa, D. Iparragirre, J.M. Ortiz, Saiz, ChemTexts 6(1), 1–14 (2020)

    Article  Google Scholar 

  36. A. Gholizadeh, L. Borůvka, M.M. Saberioon, J. Kozak, R. Vašát, K. Němeček, Soil. Water Res. 10(4), 218–227 (2015)

    Article  CAS  Google Scholar 

  37. N. Omar, A. Sengur, S.G.S. Al-Ali, Expert Syst. Appl. 149, 113280 (2020)

    Article  Google Scholar 

  38. E.V. dos Santos Pereira, D.D. de Sousa Fernandes, M.C.U. de Araújo, P.H.G.D. Diniz, M.I.S. Maciel, Microchem J. 163, 105885 (2021)

    Article  Google Scholar 

  39. C. Feng, N.J. Zhao, G.F. Yin, T.T. Gan, R.F. Yang, X.W. Chen, M. Chen, J.B. Duan, Spectrochim. Acta A 251, 119423 (2021)

    Article  CAS  Google Scholar 

  40. C.J. Wei, J.F. Wang, J.H. Ji, Anal. Lett. 54(8), 1309–1328 (2021)

    Article  CAS  Google Scholar 

  41. L.L. Li, X.G. Jang, B. Li, Y.D. Liu, Comput. Electron. Agric. 190, 106448 (2021)

    Article  Google Scholar 

  42. J. He, C. Zhang, L. Zhou, Y. He, Infrared Phys. Technol. 116, 103802 (2021)

    Article  CAS  Google Scholar 

  43. R. Hu, L.X. Zhang, Z.Y. Yu, Z.Q. Zhai, R.Y. Zhang, Infrared Phys. Technol. 102, 102999 (2019)

    Article  CAS  Google Scholar 

  44. D.Y. Zhang, L. Xu, D. Liang, C. Xu, X.L. Jin, S.Z. Weng, Food Anal. Method 11(8), 2336–2345 (2018)

    Article  Google Scholar 

  45. B.T. Ayele, V. Magnus, S. Mihaljević, T. Prebeg, R. Čož-Rakovac, J.A. Ozga, D.M. Reinecke, L.N. Mander, Y. Kamiya, S. Yamaguchi, B. Salopek-Sondi, J. Plant. Growth Regul. 29(2), 194–209 (2010)

    Article  CAS  Google Scholar 

  46. Q.L. Meng, J. Shang, R.S. Huang, Y. Zhang, J. Food Process. Eng. 44(1), e13597 (2021)

  47. G.B. Huang, Q.Y. Zhu, C.K. Siew, Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  48. L. Breiman, Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  49. T. Cover, P. Hart, IEEE Trans. Inform. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  50. J.A.K. Suykens, J. Vandewalle, Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  51. L.L. Li, B. Li, X.G. Jiang, Y.D. Liu, Agriculture 12(3), 366 (2022)

    Article  Google Scholar 

  52. X.X. Miao, Y. Miao, H.R. Gong, S.H. Tao, Z.W. Chen, J.M. Wang, Y.Z. Chen, Y.C. Chen, Spectrochim. Acta A 257, 119700 (2021)

    Article  CAS  Google Scholar 

  53. J.B. Li, W. Luo, Z.L. Wang, S.X. Fan, Postharvest Biol. Technol. 149, 235–246 (2019)

    Article  Google Scholar 

  54. B. Li, B. Luo, Y.D. Liu, J. Wu, J. Food Meas. Charact. 15(5), 4380–4387 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (No.12103019), and National Science and technology award backup project cultivation plan (No.20192AEI91007).

Funding

This study was financially supported by the National Natural Science Foundation of China (No. 12103019), and National Science and technology award backup project cultivation plan (No. 20192AEI91007).

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contribution to this research work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yande Liu.

Ethics declarations

Competing interests

The authors declare that they have no competing interest.

Ethical approval

This article has no any study with human participants or animals by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Han, Z., Wang, Q. et al. Detection of bruised loquats based on reflectance, absorbance and Kubelka–Munk spectra. Food Measure 17, 1562–1575 (2023). https://doi.org/10.1007/s11694-022-01717-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01717-3

Keywords

Navigation