Skip to main content
Log in

Investigation of phenolic contents and bioactivities of water-based extracts prepared from cryogenically pulverized Turkish propolis

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In recent years, propolis has generated significant interest in traditional medicine. Its extraction is a necessary process that requires optimal conditions that strongly influence extraction yield, chemical composition, and biological activity. The current study sought to evaluate the possible effects of pulverized propolis extract (PP) extracted from water-based Turkish propolis (WBTP) extract at low temperatures (+ 4, -80, and - 196 °C) on extraction yield, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant, antibacterial, enzyme inhibition, and DNA protective activities. The yield with the highest extraction efficiency was PP-196 (38.86%), while the PP-80 extract had the highest content of TPC (13.99 ± 0.03 mg GAE/g) and TFC (3.38 ± 0.01 mg QE/g). The HPLC-MS/MS of PP-80 extract showed the highest levels of chrysin (8708.28 µg/mL), o-coumaric acid (2939.24 µg/mL), caffeic acid (1734.35 µg/mL), kaempferol (909.61 µg/mL), p-coumaric acid (900.18 µg/mL), tamarixetin (850.10 µg/mL), morin (648.46 µg/mL), and trans-ferulic acid (619.26 µg/mL). 1 H NMR spectral analysis confirmed that the PP-80 and PP + 4 extracts exhibited high signal intensities for galangin, chrysin, ramnocitrin, genkwanin, tectochrysin, and 3-metoxycamherol. The WBTP extracts were found to be effective free radical scavengers (DPPH˙, ABTS˙+, O2˙), and the PP-80 extract had a high adequate reducing power (p ˂0.05). PP-80 and PP-196 extracts had more significant inhibitory effects on acetylcholinesterase, butyrylcholinesterase, α-glucosidase, lipase, and tyrosinase than the standards (p ˂0.05). PP-196 extract was active against P. aeruginosa, S. enterica, E. faecalis, B. cereus, and L. monocytogenes. All extracts presented considerable DNA protection activity, ranging from 73 to 85%. These findings demonstrate that PP-80 and PP-196 extracts are rich in phenolic components and possess powerful biochemical properties, supporting their proven use as dietary supplements for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a and 5b
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V.C. Toreti et al., Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evidence-based complementary and alternative medicine, 2013. 2013

  2. A. Salatino, M.L.F. Salatino, Scientific note: often quoted, but not factual data about propolis composition. Apidologie 52(2), 312–314 (2021)

    Article  Google Scholar 

  3. M. Surek et al., Chemical composition, cytotoxicity, and antibacterial activity of propolis from africanized honeybees and three different Meliponini species. J. Ethnopharmacol. 269, 113662 (2021)

    Article  CAS  PubMed  Google Scholar 

  4. L. Moreira et al., Antioxidant properties, total phenols and pollen analysis of propolis samples from Portugal. Food Chem. Toxicol. 46(11), 3482–3485 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. M. Viuda-Martos et al., Functional properties of honey, propolis, and royal jelly. J. Food Sci. 73(9), R117–R124 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. L. Zhao et al., Brazilian green propolis improves antioxidant function in patients with type 2 diabetes mellitus. Int. J. Environ. Res. Public Health 13(5), 498 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  7. E. Guzelmeric et al., Comparison of antioxidant and anti-inflammatory activity profiles of various chemically characterized turkish propolis sub-types: which propolis type is a promising source for pharmaceutical product development? Journal of Pharmaceutical and Biomedical Analysis, 2021: p. 114196

  8. V. Bankova, B. Trusheva, M. Popova, Propolis extraction methods: a review. Journal of Apicultural Research, 2021: p. 1–10

  9. M. Oroian, F. Ursachi, F. Dranca, Influence of ultrasonic amplitude, temperature, time and solvent concentration on bioactive compounds extraction from propolis. Ultrason. Sonochem. 64, 105021 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. E. Golmakani et al., Phenolic and flavonoid content and antioxidants capacity of pressurized liquid extraction and perculation method from roots of Scutellaria pinnatifida A. Hamilt. Subsp alpina (Bornm) Rech. F. J. Supercrit. Fluids 95, 318–324 (2014)

    Article  CAS  Google Scholar 

  11. Y. Zhang et al., Simultaneous determination of 20 phenolic Compounds in Propolis by HPLC-UV and HPLC-MS/MS. Journal of Food Composition and Analysis, 2022: p. 104877

  12. T. Ozen et al., An investigation of chemical content, enzyme inhibitory propert, antioxidant and antibacterial activity of Aristolochia bodamae Dingler (develiotu)(Aristolochiaceae) root extracts from Samsun, Turkey. Flavour Fragr. J. 35(3), 270–283 (2020)

    Article  CAS  Google Scholar 

  13. P. Prieto, M. Pineda, M. Aguilar, Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem. 269(2), 337–341 (1999)

    Article  CAS  PubMed  Google Scholar 

  14. M. Oyaizu, Studies on products of browning reaction. Japanese J. Nutr. dietetics 44(6), 307–315 (1986)

    Article  CAS  Google Scholar 

  15. M.S. Blois, Antioxidant determinations by the use of a stable free radical. Nature 181(4617), 1199 (1958)

    Article  CAS  Google Scholar 

  16. M. Noshad et al., Utilization of Plantago major seed mucilage containing Citrus limon essential oil as an edible coating to improve shelf-life of buffalo meat under refrigeration conditions. Food Sci. Nutr. 9(3), 1625–1639 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. R. Re et al., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26(9–10), 1231–1237 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. T.C. Dinis, V.M. Madeira, L.M. Almeida, Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315(1), 161–169 (1994)

    Article  CAS  PubMed  Google Scholar 

  19. M. Nishikimi, N.A. Rao, K. Yagi, The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 46(2), 849–854 (1972)

    Article  CAS  PubMed  Google Scholar 

  20. X.-W. Yang et al., Phenolics from Bidens bipinnata and their amylase inhibitory properties. Fitoterapia 83(7), 1169–1175 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. R. Trentin et al., Exploring Ulva australis Areschoug for possible biotechnological applications: in vitro antioxidant and enzymatic inhibitory properties, and fatty acids contents. Algal Res. 50, 101980 (2020)

    Article  Google Scholar 

  22. N. Bibi Sadeer et al., Towards the Pharmacological Validation and Phytochemical Profiling of the Decoction and Maceration of Bruguiera gymnorhiza (L.) Lam.—A Traditionally Used Medicinal Halophyte. Molecules, 2022. 27(6): p. 2000

  23. B. Mayur et al., Antioxidant and α-glucosidase inhibitory properties of Carpesium abrotanoides L. J. Med. Plants Res. 4(15), 1547–1553 (2010)

    Google Scholar 

  24. J. Chanda et al., UPLC-QTOF‐MS analysis of a carbonic anhydrase‐inhibiting extract and fractions of Luffa acutangula (L.) Roxb (ridge gourd). Phytochem. Anal. 30(2), 148–155 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. L. Zhang et al., Inhibition of urease by bismuth (III): implications for the mechanism of action of bismuth drugs. Biometals 19(5), 503–511 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. M. Yeganegi et al., Equisetum telmateia extracts: Chemical compositions, antioxidant activity and antimicrobial effect on the growth of some pathogenic strain causing poisoning and infection. Microb. Pathog. 116, 62–67 (2018)

    Article  CAS  PubMed  Google Scholar 

  27. H. Tanavar et al., Investigation of the Chemical Properties of Mentha pulegium Essential oil and its Application in Ocimum basilicum seed Mucilage Edible Coating for Extending the Quality and Shelf life of veal Stored in Refrigerator (4° C). Food Science & Nutrition, 2021. 9(10): pp. 5600–5615

  28. A. Baiseitova et al., Phytochemical analysis of aerial part of Ikonnikovia kaufmanniana and their protection of DNA damage. Natural product research, 2019: p. 1–4

  29. A. Russo et al., Free radical scavenging capacity and protective effect of Bacopa monniera L. on DNA damage. Phytotherapy Research: An International Journal devoted to pharmacological and toxicological evaluation of natural product derivatives, 2003. 17(8): p. 870–875

  30. K. Sevgi, B. Tepe, C. Sarikurkcu, Antioxidant and DNA damage protection potentials of selected phenolic acids. Food Chem. Toxicol. 77, 12–21 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. B. Tepe et al., Determination of chemical profile, antioxidant, DNA damage protection and antiamoebic activities of Teucrium polium and Stachys iberica. Fitoterapia 82(2), 237–246 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. K. Pobiega et al., Comparison of the antimicrobial activity of propolis extracts obtained by means of various extraction methods. J. Food Sci. Technology-Mysore 56(12), 5386–5395 (2019)

    Article  CAS  Google Scholar 

  33. R.K. Kishore et al., Tualang honey has higher phenolic content and greater radical scavenging activity compared with other honey sources. Nutr. Res. 31(4), 322–325 (2011)

    Article  CAS  PubMed  Google Scholar 

  34. A. Rebiai et al., Fatty acid composition of algerian Propolis. J. Fundamental Appl. Sci. 9(3), 1656–1671 (2017)

    CAS  Google Scholar 

  35. M.L. Belfar et al., Evaluation of antioxidant capacity of Propolis Collected in various areas of Algeria using Electrochemical techniques. Int. J. Electrochem. Sci. 10(11), 9641–9651 (2015)

    CAS  Google Scholar 

  36. L.S. Olegario et al., Chemical characterization of four brazilian brown propolis: an insight in tracking of its geographical location of production and quality control. Food Res. Int. 123, 481–502 (2019)

    Article  CAS  PubMed  Google Scholar 

  37. B. Fumic, M. Jug, M.Z. Koncic, Multi-response optimization of Ultrasound-assisted extraction of Bioactive Components from Medicago sativa L. Croat. Chem. Acta 90(3), 481–491 (2017)

    Article  CAS  Google Scholar 

  38. A.N. Tamfu et al., Antibiofilm and anti-quorum sensing potential of cycloartane-type triterpene acids from cameroonian grassland propolis: phenolic profile and antioxidant activity of crude extract. Molecules 27(15), 4872 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M. Yaghoubi, G. Gh, R. Satari, Antimicrobial activity of iranian propolis and its chemical composition. DARU J. Pharm. Sci. 15(1), 45–48 (2007)

    CAS  Google Scholar 

  40. V. Lagouri, D. Prasianaki, F. Krysta, Antioxidant properties and phenolic composition of greek propolis extracts. Int. J. Food Prop. 17(3), 511–522 (2014)

    Article  CAS  Google Scholar 

  41. U. Siripatrawan, W. Vitchayakitti, R. Sanguandeekul, Antioxidant and antimicrobial properties of T hai propolis extracted using ethanol aqueous solution. Int. J. Food Sci. Technol. 48(1), 22–27 (2013)

    Article  CAS  Google Scholar 

  42. N. Sha et al., Simultaneous quantification of eight major bioactive phenolic compounds in chinese propolis by high-performance liquid chromatography. Nat. Prod. Commun. 4(6), 1934578X0900400615 (2009)

    Google Scholar 

  43. J.K.S. Andrade et al., Evaluation of bioactive compounds, phytochemicals profile and antioxidant potential of the aqueous and ethanolic extracts of some traditional fruit tree leaves used in brazilian folk medicine. Food Res. Int. 143, 110282 (2021)

    Article  CAS  PubMed  Google Scholar 

  44. T. Ozdal et al., Investigation of antioxidant capacity, bioaccessibility and LC-MS/MS phenolic profile of turkish propolis. Food Res. Int. 122, 528–536 (2019)

    Article  CAS  PubMed  Google Scholar 

  45. J.S. Bonvehí, F.V. Coll, Phenolic composition of propolis from China and from South America. Z. für Naturforschung c 49(11–12), 712–718 (1994)

    Article  Google Scholar 

  46. A. Li et al., Preparative separation of polyphenols from water-soluble fraction of chinese propolis using macroporous absorptive resin coupled with preparative high performance liquid chromatography. J. Chromatogr. B 1012, 42–49 (2016)

    Google Scholar 

  47. D. Bertelli et al., 1H-NMR simultaneous identification of Health‐Relevant Compounds in Propolis extracts. Phytochem. Anal. 23(3), 260–266 (2012)

    Article  CAS  PubMed  Google Scholar 

  48. E.T.D. Almeida et al., Chemical and microbiological characterization of tinctures and microcapsules loaded with brazilian red propolis extract. J. Pharm. Anal. 7(5), 280–287 (2017)

    Article  Google Scholar 

  49. F.B. da Cruz et al., Antioxidant activity of Apis Mellifera Bee Propolis: a review. Journal of Natural Products Discovery, 2022. 1(1)

  50. S. Boulechfar et al., Anticholinesterase, anti-α-glucosidase, antioxidant and antimicrobial effects of four algerian propolis. J. Food Meas. Charact. 16(1), 793–803 (2022)

    Article  Google Scholar 

  51. I.G. Munteanu, C. Apetrei, Analytical methods used in determining antioxidant activity: a review. Int. J. Mol. Sci. 22(7), 3380 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. E.E. Çelik, V. Gökmen, Interactions between free and bound antioxidants under different conditions in food systems. Crit. Rev. Food Sci. Nutr. 62(21), 5766–5782 (2022)

    Article  PubMed  Google Scholar 

  53. B. Mahdi-Pour et al., Antioxidant activity of methanol extracts of different parts of Lantana camara. Asian Pac. J. Trop. Biomed. 2(12), 960–965 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. S. El-Guendouz et al., Anti‐acetylcholinesterase, antidiabetic, anti‐inflammatory, antityrosinase and antixanthine oxidase activities of moroccan propolis. Int. J. Food Sci. Technol. 51(8), 1762–1773 (2016)

    Article  CAS  Google Scholar 

  55. P. Celso Pardi, G.A.A.d. Santos, Relationships Between Treatment and Clinical Evaluations, in Pharmacological Treatment of Alzheimer’s Disease (Springer, 2022), pp. 175–198

  56. H.R. El-Seedi et al., Honeybee products: an updated review of neurological actions. Trends Food Sci. Technol. 101, 17–27 (2020)

    Article  CAS  Google Scholar 

  57. S. Boulechfar et al., Anticholinesterase, anti-α-glucosidase, antioxidant and antimicrobial effects of four algerian propolis. Journal of Food Measurement and Characterization, 2021: p. 1–11

  58. B. Vongsak et al., In vitro alpha glucosidase inhibition and free-radical scavenging activity of propolis from Thai stingless bees in mangosteen orchard. Revista Brasileira de Farmacognosia 25(5), 445–450 (2015)

    Article  CAS  Google Scholar 

  59. N.P. Möller, N. Roos, J. Schrezenmeir, Lipase inhibitory activity in alcohol extracts of worldwide occurring plants and propolis. Phytotherapy Research: An International Journal devoted to pharmacological and toxicological evaluation of natural product derivatives, 2009. 23(4): p. 585–586

  60. H. Sahin et al., Honey, polen, and propolis extracts show potent inhibitory activity against the zinc metalloenzyme carbonic anhydrase. J. Enzyme Inhib. Med. Chem. 26(3), 440–444 (2011)

    Article  CAS  PubMed  Google Scholar 

  61. Z. Can, Determination of in-vitro Antioxidant, anti-urease, anti-hyaluronidase Activities by Phenolic rich bee Products from Different Region of Turkey (FEB-FRESENIUS ENVIRONMENTAL BULLETIN, 2018), p. 6858

  62. N. Baltas, O. Yildiz, S. Kolayli, Inhibition properties of propolis extracts to some clinically important enzymes. J. Enzyme Inhib. Med. Chem. 31(sup1), 52–55 (2016)

    Article  CAS  PubMed  Google Scholar 

  63. B. Alizadeh-Behbahani et al., Antimicrobial activity of Avicennia marina extracts ethanol, methanol & glycerin against Penicillium digitatum (citrus green mold). Sci. J. Microbiol. 1(7), 147–151 (2012)

    Google Scholar 

  64. L. Drago et al., In vitro antimicrobial activity of propolis dry extract. J. Chemother. 12(5), 390–395 (2000)

    Article  CAS  PubMed  Google Scholar 

  65. S. Stepanović et al., In vitro antimicrobial activity of propolis and synergism between propolis and antimicrobial drugs. Microbiol. Res. 158(4), 353–357 (2003)

    Article  PubMed  Google Scholar 

  66. M. Peixoto et al., Antioxidant and Antimicrobial Activity of Blends of propolis Samples Collected in Different Years (Lwt-Food Science and Technology, 2021), p. 145

  67. A. Alghooneh et al., Application of intelligent modeling to predict the population dynamics of Pseudomonas aeruginosa in Frankfurter sausage containing Satureja bachtiarica extracts. Microb. Pathog. 85, 58–65 (2015)

    Article  PubMed  Google Scholar 

  68. T.G. Pillai, C.K.K. Nair, K. Janardhanan, Polysaccharides isolated from Ganoderma lucidum occurring in Southern parts of India, protects radiation induced damages both in vitro and in vivo. Environ. Toxicol. Pharmacol. 26(1), 80–85 (2008)

    Article  CAS  PubMed  Google Scholar 

  69. A. Karapetsas et al., Propolis extracts inhibit UV-Induced Photodamage in Human Experimental in Vitro skin models. Antioxidants, 2019. 8(5)

  70. Y. Aliyazicioglu et al., Preventive and protective effects of turkish propolis on H2O2-induced DNA damage in foreskin fibroblast cell lines. Acta Biol. Hung. 62(4), 388–396 (2011)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by OMU as Research Program and Scientific Research Project (PYO.FEN. 1901.20.001). We thank Yasar Ipek, Dr. Fatih GUL and Dr. M. Nuri ATALAR from Science and Technology Application and Research Center, Igdir University, for their contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiba H. S. Omer.

Ethics declarations

Disclosure statement

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omer, H.H.S., Demirtas, I. & Ozen, T. Investigation of phenolic contents and bioactivities of water-based extracts prepared from cryogenically pulverized Turkish propolis. Food Measure 17, 1586–1601 (2023). https://doi.org/10.1007/s11694-022-01716-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01716-4

Keywords

Navigation