Skip to main content
Log in

Determination of curcumin content in sunflower oil by fourier transform near infrared spectroscopy

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Using Fourier transform near-infrared (FT-NIR) spectroscopy and multivariate data analysis, a rapid method is developed for quantifying curcumin in sunflower oil. In this method, the influence of functional groups present in sunflower oil on the structural composition of curcumin was mitigated. All spectra were scanned in the diffuse transmittance mode in the complete spectral range of 12,000–4000 cm− 1. The spectra were analyzed by subjecting them to mathematical pre-processing viz. MSC (multiplicative scatter correction), SNV (standard normal variate), or first and second derivative. Estimation of curcumin in sunflower oil was done using the PLSR (partial least squares regression) method. The spectra required no pre-processing treatments, and the model formed between 7501.9 cm− 1 and 6800 cm− 1 of the spectral region was found to be the most sound, having a 0.9997 coefficient of correlation (r2), 2.68 root mean square error of validation (RMSECV) and less than 8 value for residual predictive deviation (RPD). Further ANOVA results showed no significant difference between the curcumin quantification by the developed FTNIR method and the HPLC method (Fcal, 0.025 < Fcri 2.12; α 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. Upadhyay, H.N. Mishra, Food Bioprocess. Tech. 8(4), 801–810 (2015)

    Article  CAS  Google Scholar 

  2. Q. Chen, H. Shi, C.T. Ho, J. Am. Oil Chem. Soc. 69(10), 999 (1992)

    Article  CAS  Google Scholar 

  3. R. Kahl, H. Kappus, Z. Lebensm Unters Forsch. 196(4), 329–338 (1993)

    Article  CAS  Google Scholar 

  4. D.L. Madhavi, S.S. Deshpande, D.K. Salunkhe, Food Antioxidants: Technological: Toxicological and Health Perspectives ( (CRC Press, Boca Raton, FL, 1996), p. 73

    Google Scholar 

  5. S. Rege, S. Momin, S. Wadekar, A. Pratap, D. Bhowmick, J. Food Process. Pres. 38(1), 296–303 (2014)

    Article  CAS  Google Scholar 

  6. S. Haldar, G.C. Majumdar, H.N. Mishra, J. Food Eng. 146, 116–121 (2015)

    Article  CAS  Google Scholar 

  7. J. Chitra, M. Ghosh, H.N. Mishra, Food Control 78, 342–349 (2017)

    Article  CAS  Google Scholar 

  8. B.G. Osborne, T. Fearrn, Near-infrared Spectroscopy in Food Analysis (Longman Scientific and Technical, Essex, 1986)

    Google Scholar 

  9. H. Martens, T. Naes, Multivariate Calibration, vol. 1, 2nd edn. (Wiley, Chichester, 1989), pp. 1–30

    Google Scholar 

  10. P.R. Griffiths, J.A. De Haseth, Fourier Transform Infrared Spectroscopy, 2nd edn. (Wiley, 2007), pp. 1–656

  11. S. Tripathi, K.G. Patel, A.M. Bafna, J. Food Sci. Tech. 47(6), 678–681 (2010)

    Article  CAS  Google Scholar 

  12. K. Tanaka, Y. Kuba, T. Sasaki, F. Hiwatashi, K. Komatsu, J. Agric. Food Chem. 56(19), 8787–8792 (2008)

    Article  CAS  Google Scholar 

  13. P.K. Mohan, G. Sreelakshmi, C.V. Muraleedharan, R. Joseph, Vib. Spectrosc. 62, 77–84 (2012)

    Article  CAS  Google Scholar 

  14. S. Haldar, H.N. Mishra, G.C. Majumdar, J. Food Process. Preserv 40(6), 1188–1198 (2016)

    Article  CAS  Google Scholar 

  15. S. Srivastava, G. Mishra, H.N. Mishra, Food Bioprocess. Technol. 11(4), 785–796 (2018)

    Article  CAS  Google Scholar 

  16. S. Srivastava, G. Mishra, H.N. Mishra, Food Chem. 268, 402–410 (2018)

    Article  CAS  Google Scholar 

  17. C.A.T. Dos Santos, M. Lopo, R.N. Páscoa, J.A. Lopes, Appl. Spectrosc. 67(11), 1215–1233 (2013)

    Article  Google Scholar 

  18. C. Pasquini, J. Brazil Chem. Soc. 14(2), 198–219 (2003)

    Article  CAS  Google Scholar 

  19. J.D. Lee, J.G. Shannon, M.G. Choung, in Soybean-Applications and Technology, ed. by Ng T-B (InTech, 2011), p. 287–304

  20. Araki, M. Yoshizumi, S. Kimura, A. Tanaka, D. Inoue, T.Furubayashi, , …M. Enomura,. AAPS PharmSciTech, 21(1), 1–9 (2020)

  21. A.C.C. Manzan, F.S. Toniolo, E. Bredow, N.P. Povh, J. Agric. Food Chem. 51(23), 6802–6807 (2003)

    Article  CAS  Google Scholar 

  22. H. Mark, Principles and Practice of Spectroscopic Calibration, vol. 118 (Wiley, New York, 1991), p. 91

    Google Scholar 

  23. L.E. Agelet, C.R. Hurburgh Jr., Crit. Rev. Anal. Chem. 40(4), 246–260 (2010)

    Article  CAS  Google Scholar 

  24. S. Tripathi, H.N. Mishra, Food Control 20(9), 840–846 (2009)

    Article  CAS  Google Scholar 

  25. H. Azizian, J.K. Kramer, Lipids 40(8), 855–867 (2005)

    Article  CAS  Google Scholar 

  26. L.M. Laurens, E.P. Knoshaug, H. Rohrer, S.V. Wychen, N. Dowe, M. Zhang, Anal. Methods 11(1), 58–69 (2019)

    Article  CAS  Google Scholar 

  27. D. Cozzolino, A.I. Murray, A. Chree, J. Scaife, R. LWT-Food Science and Technol. 38(8), 821–828 (2005)

    Article  CAS  Google Scholar 

  28. E. Szłyk, A. Szydłowska-Czerniak, A. Kowalczyk-Marzec, J. Agric. Food Chem. 53(18), 6980–6987 (2005)

    Article  Google Scholar 

  29. C. Shiroma, L. Rodriguez-Saona, J. Food Compost Anal. 22(6), 596–605 (2009)

    Article  CAS  Google Scholar 

  30. L.E. Rodriguez-Saona, F.S. Fry, M.A. McLaughlin, E.M. Calvey, Carbohydr. Res. 336(1), 63–74 (2001)

    Article  CAS  Google Scholar 

  31. P. Hourant, V. Baeten, M.T. Morales, M. Meurens, R. Aparicio, Appl. Spectrosc. 54(8), 1168–1174 (2000)

    Article  CAS  Google Scholar 

  32. N. Kang, S. Kasemsumran, Y.A. Woo, H.J. Kim, Y. Ozaki, Chemometr Intell. Lab. Syst. 82(1–2), 90–96 (2006)

    Article  CAS  Google Scholar 

  33. H. Chen, W. Ai, Q. Feng, Z. Jia, Q. Song, Spectrochim. Acta A 118, 752–759 (2014)

    Article  CAS  Google Scholar 

  34. G. Reich, Adv. Drug Deliv Rev. 57(8), 1109–1143 (2005)

    Article  CAS  Google Scholar 

  35. R. Pande, H.N. Mishra, Food Chem. 172, 880–884 (2015)

    Article  CAS  Google Scholar 

  36. J.H. Kalivas, P. Gemperline, in Practical Guide to Chemometrics, ed. By P. Gemperline, 2nd edn. (CRC Press, Florida, USA, 2006), pp. 105–166

  37. P.C. Williams, D.C. Sobering, in Near Infrared Spectroscopy: The Future Waves, ed. by A.M.C. By, Davies, P.C. Williams (NIR Publications, Chichester, West Sussex, UK, 1996), pp. 185–188

    Google Scholar 

  38. D.S. Ferreira, J.A.L. Pallone, R.J. Poppi, Food Res. Int. 51(1), 53–58 (2013)

    Article  CAS  Google Scholar 

  39. S. Fragoso, L. Aceña, J. Guasch, O. Busto, M. Mestres, J. Agric. Food Chem. 59(6), 2175–2183 (2011)

    Article  CAS  Google Scholar 

  40. P. Williams, K. Norris, Near-infrared Technology: in the Agricultural and Food Industries, 2nd edn. (American Association of Cereal Chemists, Inc. St. Paul, MN, USA, 2001), p. 296

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Biotechnology (DBT), Government of India, New Delhi (India) for providing financial aid (Project Ref. No. BT/FNS/01/05/2008) and the Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal (India) for infrastructural support.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarrna Haldar.

Ethics declarations

Competing interests

The authors of the manuscript declare that they have no competing interests to declare.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haldar, S., Srivastava, S., Mishra, H.N. et al. Determination of curcumin content in sunflower oil by fourier transform near infrared spectroscopy. Food Measure 17, 24–32 (2023). https://doi.org/10.1007/s11694-022-01569-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01569-x

Keywords

Navigation